view x265/source/encoder/search.h @ 0:772086c29cc7

Initial import.
author Matti Hamalainen <ccr@tnsp.org>
date Wed, 16 Nov 2016 11:16:33 +0200
parents
children
line wrap: on
line source

/*****************************************************************************
* Copyright (C) 2013 x265 project
*
* Authors: Steve Borho <steve@borho.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/

#ifndef X265_SEARCH_H
#define X265_SEARCH_H

#include "common.h"
#include "predict.h"
#include "quant.h"
#include "bitcost.h"
#include "framedata.h"
#include "yuv.h"
#include "threadpool.h"

#include "rdcost.h"
#include "entropy.h"
#include "motion.h"

#if DETAILED_CU_STATS
#define ProfileCUScopeNamed(name, cu, acc, count) \
    m_stats[cu.m_encData->m_frameEncoderID].count++; \
    ScopedElapsedTime name(m_stats[cu.m_encData->m_frameEncoderID].acc)
#define ProfileCUScope(cu, acc, count) ProfileCUScopeNamed(timedScope, cu, acc, count)
#define ProfileCounter(cu, count) m_stats[cu.m_encData->m_frameEncoderID].count++;
#else
#define ProfileCUScopeNamed(name, cu, acc, count)
#define ProfileCUScope(cu, acc, count)
#define ProfileCounter(cu, count)
#endif

namespace X265_NS {
// private namespace

class Entropy;
struct ThreadLocalData;

/* All the CABAC contexts that Analysis needs to keep track of at each depth
 * and temp buffers for residual, coeff, and recon for use during residual
 * quad-tree depth recursion */
struct RQTData
{
    Entropy  cur;     /* starting context for current CU */

    /* these are indexed by qtLayer (log2size - 2) so nominally 0=4x4, 1=8x8, 2=16x16, 3=32x32
     * the coeffRQT and reconQtYuv are allocated to the max CU size at every depth. The parts
     * which are reconstructed at each depth are valid. At the end, the transform depth table
     * is walked and the coeff and recon at the final split depths are collected */
    Entropy  rqtRoot;      /* residual quad-tree start context */
    Entropy  rqtTemp;      /* residual quad-tree temp context */
    Entropy  rqtTest;      /* residual quad-tree test context */
    coeff_t* coeffRQT[3];  /* coeff storage for entire CTU for each RQT layer */
    Yuv      reconQtYuv;   /* recon storage for entire CTU for each RQT layer (intra) */
    ShortYuv resiQtYuv;    /* residual storage for entire CTU for each RQT layer (inter) */
    
    /* per-depth temp buffers for inter prediction */
    ShortYuv tmpResiYuv;
    Yuv      tmpPredYuv;
    Yuv      bidirPredYuv[2];
};

struct MotionData
{
    MV       mv;
    MV       mvp;
    int      mvpIdx;
    int      ref;
    uint32_t cost;
    int      bits;
};

struct Mode
{
    CUData     cu;
    const Yuv* fencYuv;
    Yuv        predYuv;
    Yuv        reconYuv;
    Entropy    contexts;

    enum { MAX_INTER_PARTS = 2 };

    MotionData bestME[MAX_INTER_PARTS][2];
    MV         amvpCand[2][MAX_NUM_REF][AMVP_NUM_CANDS];

    // Neighbour MVs of the current partition. 5 spatial candidates and the
    // temporal candidate.
    InterNeighbourMV interNeighbours[6];

    uint64_t   rdCost;     // sum of partition (psy) RD costs          (sse(fenc, recon) + lambda2 * bits)
    uint64_t   sa8dCost;   // sum of partition sa8d distortion costs   (sa8d(fenc, pred) + lambda * bits)
    uint32_t   sa8dBits;   // signal bits used in sa8dCost calculation
    uint32_t   psyEnergy;  // sum of partition psycho-visual energy difference
    sse_ret_t  resEnergy;  // sum of partition residual energy after motion prediction
    sse_ret_t  lumaDistortion;
    sse_ret_t  chromaDistortion;
    sse_ret_t  distortion; // sum of partition SSE distortion
    uint32_t   totalBits;  // sum of partition bits (mv + coeff)
    uint32_t   mvBits;     // Mv bits + Ref + block type (or intra mode)
    uint32_t   coeffBits;  // Texture bits (DCT Coeffs)

    void initCosts()
    {
        rdCost = 0;
        sa8dCost = 0;
        sa8dBits = 0;
        psyEnergy = 0;
        resEnergy = 0;
        lumaDistortion = 0;
        chromaDistortion = 0;
        distortion = 0;
        totalBits = 0;
        mvBits = 0;
        coeffBits = 0;
    }

    void invalidate()
    {
        /* set costs to invalid data, catch uninitialized re-use */
        rdCost = UINT64_MAX / 2;
        sa8dCost = UINT64_MAX / 2;
        sa8dBits = MAX_UINT / 2;
        psyEnergy = MAX_UINT / 2;
#if X265_DEPTH <= 10
        resEnergy = MAX_UINT / 2;
        lumaDistortion = MAX_UINT / 2;
        chromaDistortion = MAX_UINT / 2;
        distortion = MAX_UINT / 2;
#else
        resEnergy = UINT64_MAX / 2;
        lumaDistortion = UINT64_MAX / 2;
        chromaDistortion = UINT64_MAX / 2;
        distortion = UINT64_MAX / 2;
#endif
        totalBits = MAX_UINT / 2;
        mvBits = MAX_UINT / 2;
        coeffBits = MAX_UINT / 2;
    }

    bool ok() const
    {
#if X265_DEPTH <= 10
        return !(rdCost >= UINT64_MAX / 2 ||
            sa8dCost >= UINT64_MAX / 2 ||
            sa8dBits >= MAX_UINT / 2 ||
            psyEnergy >= MAX_UINT / 2 ||
            resEnergy >= MAX_UINT / 2 ||
            lumaDistortion >= MAX_UINT / 2 ||
            chromaDistortion >= MAX_UINT / 2 ||
            distortion >= MAX_UINT / 2 ||
            totalBits >= MAX_UINT / 2 ||
            mvBits >= MAX_UINT / 2 ||
            coeffBits >= MAX_UINT / 2);
#else
        return !(rdCost >= UINT64_MAX / 2 ||
                 sa8dCost >= UINT64_MAX / 2 ||
                 sa8dBits >= MAX_UINT / 2 ||
                 psyEnergy >= MAX_UINT / 2 ||
                 resEnergy >= UINT64_MAX / 2 ||
                 lumaDistortion >= UINT64_MAX / 2 ||
                 chromaDistortion >= UINT64_MAX / 2 ||
                 distortion >= UINT64_MAX / 2 ||
                 totalBits >= MAX_UINT / 2 ||
                 mvBits >= MAX_UINT / 2 ||
                 coeffBits >= MAX_UINT / 2);
#endif
    }

    void addSubCosts(const Mode& subMode)
    {
        X265_CHECK(subMode.ok(), "sub-mode not initialized");

        rdCost += subMode.rdCost;
        sa8dCost += subMode.sa8dCost;
        sa8dBits += subMode.sa8dBits;
        psyEnergy += subMode.psyEnergy;
        resEnergy += subMode.resEnergy;
        lumaDistortion += subMode.lumaDistortion;
        chromaDistortion += subMode.chromaDistortion;
        distortion += subMode.distortion;
        totalBits += subMode.totalBits;
        mvBits += subMode.mvBits;
        coeffBits += subMode.coeffBits;
    }
};

#if DETAILED_CU_STATS
/* This structure is intended for performance debugging and we make no attempt
 * to handle dynamic range overflows. Care should be taken to avoid long encodes
 * if you care about the accuracy of these elapsed times and counters. This
 * profiling is orthogonal to PPA/VTune and can be enabled independently from
 * either of them */
struct CUStats
{
    int64_t  intraRDOElapsedTime[NUM_CU_DEPTH]; // elapsed worker time in intra RDO per CU depth
    int64_t  interRDOElapsedTime[NUM_CU_DEPTH]; // elapsed worker time in inter RDO per CU depth
    int64_t  intraAnalysisElapsedTime;          // elapsed worker time in intra sa8d analysis
    int64_t  motionEstimationElapsedTime;       // elapsed worker time in predInterSearch()
    int64_t  loopFilterElapsedTime;             // elapsed worker time in deblock and SAO and PSNR/SSIM
    int64_t  pmeTime;                           // elapsed worker time processing ME slave jobs
    int64_t  pmeBlockTime;                      // elapsed worker time blocked for pme batch completion
    int64_t  pmodeTime;                         // elapsed worker time processing pmode slave jobs
    int64_t  pmodeBlockTime;                    // elapsed worker time blocked for pmode batch completion
    int64_t  weightAnalyzeTime;                 // elapsed worker time analyzing reference weights
    int64_t  totalCTUTime;                      // elapsed worker time in compressCTU (includes pmode master)

    uint32_t skippedMotionReferences[NUM_CU_DEPTH];
    uint32_t totalMotionReferences[NUM_CU_DEPTH];
    uint32_t skippedIntraCU[NUM_CU_DEPTH];
    uint32_t totalIntraCU[NUM_CU_DEPTH];

    uint64_t countIntraRDO[NUM_CU_DEPTH];
    uint64_t countInterRDO[NUM_CU_DEPTH];
    uint64_t countIntraAnalysis;
    uint64_t countMotionEstimate;
    uint64_t countLoopFilter;
    uint64_t countPMETasks;
    uint64_t countPMEMasters;
    uint64_t countPModeTasks;
    uint64_t countPModeMasters;
    uint64_t countWeightAnalyze;
    uint64_t totalCTUs;

    CUStats() { clear(); }

    void clear()
    {
        memset(this, 0, sizeof(*this));
    }

    void accumulate(CUStats& other)
    {
        for (uint32_t i = 0; i <= g_maxCUDepth; i++)
        {
            intraRDOElapsedTime[i] += other.intraRDOElapsedTime[i];
            interRDOElapsedTime[i] += other.interRDOElapsedTime[i];
            countIntraRDO[i] += other.countIntraRDO[i];
            countInterRDO[i] += other.countInterRDO[i];
            skippedMotionReferences[i] += other.skippedMotionReferences[i];
            totalMotionReferences[i] += other.totalMotionReferences[i];
            skippedIntraCU[i] += other.skippedIntraCU[i];
            totalIntraCU[i] += other.totalIntraCU[i];
        }

        intraAnalysisElapsedTime += other.intraAnalysisElapsedTime;
        motionEstimationElapsedTime += other.motionEstimationElapsedTime;
        loopFilterElapsedTime += other.loopFilterElapsedTime;
        pmeTime += other.pmeTime;
        pmeBlockTime += other.pmeBlockTime;
        pmodeTime += other.pmodeTime;
        pmodeBlockTime += other.pmodeBlockTime;
        weightAnalyzeTime += other.weightAnalyzeTime;
        totalCTUTime += other.totalCTUTime;

        countIntraAnalysis += other.countIntraAnalysis;
        countMotionEstimate += other.countMotionEstimate;
        countLoopFilter += other.countLoopFilter;
        countPMETasks += other.countPMETasks;
        countPMEMasters += other.countPMEMasters;
        countPModeTasks += other.countPModeTasks;
        countPModeMasters += other.countPModeMasters;
        countWeightAnalyze += other.countWeightAnalyze;
        totalCTUs += other.totalCTUs;

        other.clear();
    }
}; 
#endif

inline int getTUBits(int idx, int numIdx)
{
    return idx + (idx < numIdx - 1);
}

class Search : public Predict
{
public:

    static const int16_t zeroShort[MAX_CU_SIZE];

    MotionEstimate  m_me;
    Quant           m_quant;
    RDCost          m_rdCost;
    const x265_param* m_param;
    Frame*          m_frame;
    const Slice*    m_slice;

    Entropy         m_entropyCoder;
    RQTData         m_rqt[NUM_FULL_DEPTH];

    uint8_t*        m_qtTempCbf[3];
    uint8_t*        m_qtTempTransformSkipFlag[3];

    pixel*          m_fencScaled;     /* 32x32 buffer for down-scaled version of 64x64 CU fenc */
    pixel*          m_fencTransposed; /* 32x32 buffer for transposed copy of fenc */
    pixel*          m_intraPred;      /* 32x32 buffer for individual intra predictions */
    pixel*          m_intraPredAngs;  /* allocation for 33 consecutive (all angular) 32x32 intra predictions */

    coeff_t*        m_tsCoeff;        /* transform skip coeff 32x32 */
    int16_t*        m_tsResidual;     /* transform skip residual 32x32 */
    pixel*          m_tsRecon;        /* transform skip reconstructed pixels 32x32 */

    bool            m_bFrameParallel;
    bool            m_bEnableRDOQ;
    uint32_t        m_numLayers;
    uint32_t        m_refLagPixels;

#if DETAILED_CU_STATS
    /* Accumulate CU statistics separately for each frame encoder */
    CUStats         m_stats[X265_MAX_FRAME_THREADS];
#endif

    Search();
    ~Search();

    bool     initSearch(const x265_param& param, ScalingList& scalingList);
    int      setLambdaFromQP(const CUData& ctu, int qp); /* returns real quant QP in valid spec range */

    // mark temp RD entropy contexts as uninitialized; useful for finding loads without stores
    void     invalidateContexts(int fromDepth);

    // full RD search of intra modes. if sharedModes is not NULL, it directly uses them
    void     checkIntra(Mode& intraMode, const CUGeom& cuGeom, PartSize partSize, uint8_t* sharedModes, uint8_t* sharedChromaModes);

    // select best intra mode using only sa8d costs, cannot measure NxN intra
    void     checkIntraInInter(Mode& intraMode, const CUGeom& cuGeom);
    // encode luma mode selected by checkIntraInInter, then pick and encode a chroma mode
    void     encodeIntraInInter(Mode& intraMode, const CUGeom& cuGeom);

    // estimation inter prediction (non-skip)
    void     predInterSearch(Mode& interMode, const CUGeom& cuGeom, bool bChromaMC, uint32_t masks[2]);

    // encode residual and compute rd-cost for inter mode
    void     encodeResAndCalcRdInterCU(Mode& interMode, const CUGeom& cuGeom);
    void     encodeResAndCalcRdSkipCU(Mode& interMode);

    // encode residual without rd-cost
    void     residualTransformQuantInter(Mode& mode, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t tuDepth, const uint32_t depthRange[2]);
    void     residualTransformQuantIntra(Mode& mode, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t tuDepth, const uint32_t depthRange[2]);
    void     residualQTIntraChroma(Mode& mode, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t tuDepth);

    // pick be chroma mode from available using just sa8d costs
    void     getBestIntraModeChroma(Mode& intraMode, const CUGeom& cuGeom);

    /* update CBF flags and QP values to be internally consistent */
    void checkDQP(Mode& mode, const CUGeom& cuGeom);
    void checkDQPForSplitPred(Mode& mode, const CUGeom& cuGeom);

    MV getLowresMV(const CUData& cu, const PredictionUnit& pu, int list, int ref);

    class PME : public BondedTaskGroup
    {
    public:

        Search&       master;
        Mode&         mode;
        const CUGeom& cuGeom;
        const PredictionUnit& pu;
        int           puIdx;

        struct {
            int ref[2][MAX_NUM_REF];
            int refCnt[2];
        } m_jobs;

        PME(Search& s, Mode& m, const CUGeom& g, const PredictionUnit& u, int p) : master(s), mode(m), cuGeom(g), pu(u), puIdx(p) {}

        void processTasks(int workerThreadId);

    protected:

        PME operator=(const PME&);
    };

    void     processPME(PME& pme, Search& slave);
    void     singleMotionEstimation(Search& master, Mode& interMode, const PredictionUnit& pu, int part, int list, int ref);

protected:

    /* motion estimation distribution */
    ThreadLocalData* m_tld;

    uint32_t      m_listSelBits[3];
    Lock          m_meLock;

    void     saveResidualQTData(CUData& cu, ShortYuv& resiYuv, uint32_t absPartIdx, uint32_t tuDepth);

    // RDO search of luma intra modes; result is fully encoded luma. luma distortion is returned
    uint32_t estIntraPredQT(Mode &intraMode, const CUGeom& cuGeom, const uint32_t depthRange[2], uint8_t* sharedModes);

    // RDO select best chroma mode from luma; result is fully encode chroma. chroma distortion is returned
    uint32_t estIntraPredChromaQT(Mode &intraMode, const CUGeom& cuGeom, uint8_t* sharedChromaModes);

    void     codeSubdivCbfQTChroma(const CUData& cu, uint32_t tuDepth, uint32_t absPartIdx);
    void     codeInterSubdivCbfQT(CUData& cu, uint32_t absPartIdx, const uint32_t tuDepth, const uint32_t depthRange[2]);
    void     codeCoeffQTChroma(const CUData& cu, uint32_t tuDepth, uint32_t absPartIdx, TextType ttype);

    struct Cost
    {
        uint64_t rdcost;
        uint32_t bits;
        sse_ret_t distortion;
        uint32_t energy;
        Cost() { rdcost = 0; bits = 0; distortion = 0; energy = 0; }
    };

    uint64_t estimateNullCbfCost(uint32_t &dist, uint32_t &psyEnergy, uint32_t tuDepth, TextType compId);
    void     estimateResidualQT(Mode& mode, const CUGeom& cuGeom, uint32_t absPartIdx, uint32_t depth, ShortYuv& resiYuv, Cost& costs, const uint32_t depthRange[2]);

    // generate prediction, generate residual and recon. if bAllowSplit, find optimal RQT splits
    void     codeIntraLumaQT(Mode& mode, const CUGeom& cuGeom, uint32_t tuDepth, uint32_t absPartIdx, bool bAllowSplit, Cost& costs, const uint32_t depthRange[2]);
    void     codeIntraLumaTSkip(Mode& mode, const CUGeom& cuGeom, uint32_t tuDepth, uint32_t absPartIdx, Cost& costs);
    void     extractIntraResultQT(CUData& cu, Yuv& reconYuv, uint32_t tuDepth, uint32_t absPartIdx);

    // generate chroma prediction, generate residual and recon
    uint32_t codeIntraChromaQt(Mode& mode, const CUGeom& cuGeom, uint32_t tuDepth, uint32_t absPartIdx, uint32_t& psyEnergy);
    uint32_t codeIntraChromaTSkip(Mode& mode, const CUGeom& cuGeom, uint32_t tuDepth, uint32_t tuDepthC, uint32_t absPartIdx, uint32_t& psyEnergy);
    void     extractIntraResultChromaQT(CUData& cu, Yuv& reconYuv, uint32_t absPartIdx, uint32_t tuDepth);

    // reshuffle CBF flags after coding a pair of 4:2:2 chroma blocks
    void     offsetSubTUCBFs(CUData& cu, TextType ttype, uint32_t tuDepth, uint32_t absPartIdx);

    /* output of mergeEstimation, best merge candidate */
    struct MergeData
    {
        MVField  mvField[2];
        uint32_t dir;
        uint32_t index;
        uint32_t bits;
    };

    /* inter/ME helper functions */
    int       selectMVP(const CUData& cu, const PredictionUnit& pu, const MV amvp[AMVP_NUM_CANDS], int list, int ref);
    const MV& checkBestMVP(const MV amvpCand[2], const MV& mv, int& mvpIdx, uint32_t& outBits, uint32_t& outCost) const;
    void     setSearchRange(const CUData& cu, const MV& mvp, int merange, MV& mvmin, MV& mvmax) const;
    uint32_t mergeEstimation(CUData& cu, const CUGeom& cuGeom, const PredictionUnit& pu, int puIdx, MergeData& m);
    static void getBlkBits(PartSize cuMode, bool bPSlice, int puIdx, uint32_t lastMode, uint32_t blockBit[3]);

    /* intra helper functions */
    enum { MAX_RD_INTRA_MODES = 16 };
    static void updateCandList(uint32_t mode, uint64_t cost, int maxCandCount, uint32_t* candModeList, uint64_t* candCostList);

    // get most probable luma modes for CU part, and bit cost of all non mpm modes
    uint32_t getIntraRemModeBits(CUData & cu, uint32_t absPartIdx, uint32_t mpmModes[3], uint64_t& mpms) const;

    void updateModeCost(Mode& m) const { m.rdCost = m_rdCost.m_psyRd ? m_rdCost.calcPsyRdCost(m.distortion, m.totalBits, m.psyEnergy) : m_rdCost.calcRdCost(m.distortion, m.totalBits); }
};
}

#endif // ifndef X265_SEARCH_H