comparison x265/source/common/cudata.h @ 0:772086c29cc7

Initial import.
author Matti Hamalainen <ccr@tnsp.org>
date Wed, 16 Nov 2016 11:16:33 +0200
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:772086c29cc7
1 /*****************************************************************************
2 * Copyright (C) 2015 x265 project
3 *
4 * Authors: Steve Borho <steve@borho.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
19 *
20 * This program is also available under a commercial proprietary license.
21 * For more information, contact us at license @ x265.com.
22 *****************************************************************************/
23
24 #ifndef X265_CUDATA_H
25 #define X265_CUDATA_H
26
27 #include "common.h"
28 #include "slice.h"
29 #include "mv.h"
30
31 namespace X265_NS {
32 // private namespace
33
34 class FrameData;
35 class Slice;
36 struct TUEntropyCodingParameters;
37 struct CUDataMemPool;
38
39 enum PartSize
40 {
41 SIZE_2Nx2N, // symmetric motion partition, 2Nx2N
42 SIZE_2NxN, // symmetric motion partition, 2Nx N
43 SIZE_Nx2N, // symmetric motion partition, Nx2N
44 SIZE_NxN, // symmetric motion partition, Nx N
45 SIZE_2NxnU, // asymmetric motion partition, 2Nx( N/2) + 2Nx(3N/2)
46 SIZE_2NxnD, // asymmetric motion partition, 2Nx(3N/2) + 2Nx( N/2)
47 SIZE_nLx2N, // asymmetric motion partition, ( N/2)x2N + (3N/2)x2N
48 SIZE_nRx2N, // asymmetric motion partition, (3N/2)x2N + ( N/2)x2N
49 NUM_SIZES
50 };
51
52 enum PredMode
53 {
54 MODE_NONE = 0,
55 MODE_INTER = (1 << 0),
56 MODE_INTRA = (1 << 1),
57 MODE_SKIP = (1 << 2) | MODE_INTER
58 };
59
60 // motion vector predictor direction used in AMVP
61 enum MVP_DIR
62 {
63 MD_LEFT = 0, // MVP of left block
64 MD_ABOVE, // MVP of above block
65 MD_ABOVE_RIGHT, // MVP of above right block
66 MD_BELOW_LEFT, // MVP of below left block
67 MD_ABOVE_LEFT, // MVP of above left block
68 MD_COLLOCATED // MVP of temporal neighbour
69 };
70
71 struct CUGeom
72 {
73 enum {
74 INTRA = 1<<0, // CU is intra predicted
75 PRESENT = 1<<1, // CU is not completely outside the frame
76 SPLIT_MANDATORY = 1<<2, // CU split is mandatory if CU is inside frame and can be split
77 LEAF = 1<<3, // CU is a leaf node of the CTU
78 SPLIT = 1<<4, // CU is currently split in four child CUs.
79 };
80
81 // (1 + 4 + 16 + 64) = 85.
82 enum { MAX_GEOMS = 85 };
83
84 uint32_t log2CUSize; // Log of the CU size.
85 uint32_t childOffset; // offset of the first child CU from current CU
86 uint32_t absPartIdx; // Part index of this CU in terms of 4x4 blocks.
87 uint32_t numPartitions; // Number of 4x4 blocks in the CU
88 uint32_t flags; // CU flags.
89 uint32_t depth; // depth of this CU relative from CTU
90 };
91
92 struct MVField
93 {
94 MV mv;
95 int refIdx;
96 };
97
98 // Structure that keeps the neighbour's MV information.
99 struct InterNeighbourMV
100 {
101 // Neighbour MV. The index represents the list.
102 MV mv[2];
103
104 // Collocated right bottom CU addr.
105 uint32_t cuAddr[2];
106
107 // For spatial prediction, this field contains the reference index
108 // in each list (-1 if not available).
109 //
110 // For temporal prediction, the first value is used for the
111 // prediction with list 0. The second value is used for the prediction
112 // with list 1. For each value, the first four bits are the reference index
113 // associated to the PMV, and the fifth bit is the list associated to the PMV.
114 // if both reference indices are -1, then unifiedRef is also -1
115 union { int16_t refIdx[2]; int32_t unifiedRef; };
116 };
117
118 typedef void(*cucopy_t)(uint8_t* dst, uint8_t* src); // dst and src are aligned to MIN(size, 32)
119 typedef void(*cubcast_t)(uint8_t* dst, uint8_t val); // dst is aligned to MIN(size, 32)
120
121 // Partition count table, index represents partitioning mode.
122 const uint32_t nbPartsTable[8] = { 1, 2, 2, 4, 2, 2, 2, 2 };
123
124 // Partition table.
125 // First index is partitioning mode. Second index is partition index.
126 // Third index is 0 for partition sizes, 1 for partition offsets. The
127 // sizes and offsets are encoded as two packed 4-bit values (X,Y).
128 // X and Y represent 1/4 fractions of the block size.
129 const uint32_t partTable[8][4][2] =
130 {
131 // XY
132 { { 0x44, 0x00 }, { 0x00, 0x00 }, { 0x00, 0x00 }, { 0x00, 0x00 } }, // SIZE_2Nx2N.
133 { { 0x42, 0x00 }, { 0x42, 0x02 }, { 0x00, 0x00 }, { 0x00, 0x00 } }, // SIZE_2NxN.
134 { { 0x24, 0x00 }, { 0x24, 0x20 }, { 0x00, 0x00 }, { 0x00, 0x00 } }, // SIZE_Nx2N.
135 { { 0x22, 0x00 }, { 0x22, 0x20 }, { 0x22, 0x02 }, { 0x22, 0x22 } }, // SIZE_NxN.
136 { { 0x41, 0x00 }, { 0x43, 0x01 }, { 0x00, 0x00 }, { 0x00, 0x00 } }, // SIZE_2NxnU.
137 { { 0x43, 0x00 }, { 0x41, 0x03 }, { 0x00, 0x00 }, { 0x00, 0x00 } }, // SIZE_2NxnD.
138 { { 0x14, 0x00 }, { 0x34, 0x10 }, { 0x00, 0x00 }, { 0x00, 0x00 } }, // SIZE_nLx2N.
139 { { 0x34, 0x00 }, { 0x14, 0x30 }, { 0x00, 0x00 }, { 0x00, 0x00 } } // SIZE_nRx2N.
140 };
141
142 // Partition Address table.
143 // First index is partitioning mode. Second index is partition address.
144 const uint32_t partAddrTable[8][4] =
145 {
146 { 0x00, 0x00, 0x00, 0x00 }, // SIZE_2Nx2N.
147 { 0x00, 0x08, 0x08, 0x08 }, // SIZE_2NxN.
148 { 0x00, 0x04, 0x04, 0x04 }, // SIZE_Nx2N.
149 { 0x00, 0x04, 0x08, 0x0C }, // SIZE_NxN.
150 { 0x00, 0x02, 0x02, 0x02 }, // SIZE_2NxnU.
151 { 0x00, 0x0A, 0x0A, 0x0A }, // SIZE_2NxnD.
152 { 0x00, 0x01, 0x01, 0x01 }, // SIZE_nLx2N.
153 { 0x00, 0x05, 0x05, 0x05 } // SIZE_nRx2N.
154 };
155
156 // Holds part data for a CU of a given size, from an 8x8 CU to a CTU
157 class CUData
158 {
159 public:
160
161 static cubcast_t s_partSet[NUM_FULL_DEPTH]; // pointer to broadcast set functions per absolute depth
162 static uint32_t s_numPartInCUSize;
163
164 FrameData* m_encData;
165 const Slice* m_slice;
166
167 cucopy_t m_partCopy; // pointer to function that copies m_numPartitions elements
168 cubcast_t m_partSet; // pointer to function that sets m_numPartitions elements
169 cucopy_t m_subPartCopy; // pointer to function that copies m_numPartitions/4 elements, may be NULL
170 cubcast_t m_subPartSet; // pointer to function that sets m_numPartitions/4 elements, may be NULL
171
172 uint32_t m_cuAddr; // address of CTU within the picture in raster order
173 uint32_t m_absIdxInCTU; // address of CU within its CTU in Z scan order
174 uint32_t m_cuPelX; // CU position within the picture, in pixels (X)
175 uint32_t m_cuPelY; // CU position within the picture, in pixels (Y)
176 uint32_t m_numPartitions; // maximum number of 4x4 partitions within this CU
177
178 uint32_t m_chromaFormat;
179 uint32_t m_hChromaShift;
180 uint32_t m_vChromaShift;
181
182 /* Per-part data, stored contiguously */
183 int8_t* m_qp; // array of QP values
184 uint8_t* m_log2CUSize; // array of cu log2Size TODO: seems redundant to depth
185 uint8_t* m_lumaIntraDir; // array of intra directions (luma)
186 uint8_t* m_tqBypass; // array of CU lossless flags
187 int8_t* m_refIdx[2]; // array of motion reference indices per list
188 uint8_t* m_cuDepth; // array of depths
189 uint8_t* m_predMode; // array of prediction modes
190 uint8_t* m_partSize; // array of partition sizes
191 uint8_t* m_mergeFlag; // array of merge flags
192 uint8_t* m_interDir; // array of inter directions
193 uint8_t* m_mvpIdx[2]; // array of motion vector predictor candidates or merge candidate indices [0]
194 uint8_t* m_tuDepth; // array of transform indices
195 uint8_t* m_transformSkip[3]; // array of transform skipping flags per plane
196 uint8_t* m_cbf[3]; // array of coded block flags (CBF) per plane
197 uint8_t* m_chromaIntraDir; // array of intra directions (chroma)
198 enum { BytesPerPartition = 21 }; // combined sizeof() of all per-part data
199
200 coeff_t* m_trCoeff[3]; // transformed coefficient buffer per plane
201
202 MV* m_mv[2]; // array of motion vectors per list
203 MV* m_mvd[2]; // array of coded motion vector deltas per list
204 enum { TMVP_UNIT_MASK = 0xF0 }; // mask for mapping index to into a compressed (reference) MV field
205
206 const CUData* m_cuAboveLeft; // pointer to above-left neighbor CTU
207 const CUData* m_cuAboveRight; // pointer to above-right neighbor CTU
208 const CUData* m_cuAbove; // pointer to above neighbor CTU
209 const CUData* m_cuLeft; // pointer to left neighbor CTU
210
211 CUData();
212
213 void initialize(const CUDataMemPool& dataPool, uint32_t depth, int csp, int instance);
214 static void calcCTUGeoms(uint32_t ctuWidth, uint32_t ctuHeight, uint32_t maxCUSize, uint32_t minCUSize, CUGeom cuDataArray[CUGeom::MAX_GEOMS]);
215
216 void initCTU(const Frame& frame, uint32_t cuAddr, int qp);
217 void initSubCU(const CUData& ctu, const CUGeom& cuGeom, int qp);
218 void initLosslessCU(const CUData& cu, const CUGeom& cuGeom);
219
220 void copyPartFrom(const CUData& cu, const CUGeom& childGeom, uint32_t subPartIdx);
221 void setEmptyPart(const CUGeom& childGeom, uint32_t subPartIdx);
222 void copyToPic(uint32_t depth) const;
223
224 /* RD-0 methods called only from encodeResidue */
225 void copyFromPic(const CUData& ctu, const CUGeom& cuGeom);
226 void updatePic(uint32_t depth) const;
227
228 void setPartSizeSubParts(PartSize size) { m_partSet(m_partSize, (uint8_t)size); }
229 void setPredModeSubParts(PredMode mode) { m_partSet(m_predMode, (uint8_t)mode); }
230 void clearCbf() { m_partSet(m_cbf[0], 0); m_partSet(m_cbf[1], 0); m_partSet(m_cbf[2], 0); }
231
232 /* these functions all take depth as an absolute depth from CTU, it is used to calculate the number of parts to copy */
233 void setQPSubParts(int8_t qp, uint32_t absPartIdx, uint32_t depth) { s_partSet[depth]((uint8_t*)m_qp + absPartIdx, (uint8_t)qp); }
234 void setTUDepthSubParts(uint8_t tuDepth, uint32_t absPartIdx, uint32_t depth) { s_partSet[depth](m_tuDepth + absPartIdx, tuDepth); }
235 void setLumaIntraDirSubParts(uint8_t dir, uint32_t absPartIdx, uint32_t depth) { s_partSet[depth](m_lumaIntraDir + absPartIdx, dir); }
236 void setChromIntraDirSubParts(uint8_t dir, uint32_t absPartIdx, uint32_t depth) { s_partSet[depth](m_chromaIntraDir + absPartIdx, dir); }
237 void setCbfSubParts(uint8_t cbf, TextType ttype, uint32_t absPartIdx, uint32_t depth) { s_partSet[depth](m_cbf[ttype] + absPartIdx, cbf); }
238 void setCbfPartRange(uint8_t cbf, TextType ttype, uint32_t absPartIdx, uint32_t coveredPartIdxes) { memset(m_cbf[ttype] + absPartIdx, cbf, coveredPartIdxes); }
239 void setTransformSkipSubParts(uint8_t tskip, TextType ttype, uint32_t absPartIdx, uint32_t depth) { s_partSet[depth](m_transformSkip[ttype] + absPartIdx, tskip); }
240 void setTransformSkipPartRange(uint8_t tskip, TextType ttype, uint32_t absPartIdx, uint32_t coveredPartIdxes) { memset(m_transformSkip[ttype] + absPartIdx, tskip, coveredPartIdxes); }
241
242 bool setQPSubCUs(int8_t qp, uint32_t absPartIdx, uint32_t depth);
243
244 void setPUInterDir(uint8_t dir, uint32_t absPartIdx, uint32_t puIdx);
245 void setPUMv(int list, const MV& mv, int absPartIdx, int puIdx);
246 void setPURefIdx(int list, int8_t refIdx, int absPartIdx, int puIdx);
247
248 uint8_t getCbf(uint32_t absPartIdx, TextType ttype, uint32_t tuDepth) const { return (m_cbf[ttype][absPartIdx] >> tuDepth) & 0x1; }
249 uint8_t getQtRootCbf(uint32_t absPartIdx) const { return m_cbf[0][absPartIdx] || m_cbf[1][absPartIdx] || m_cbf[2][absPartIdx]; }
250 int8_t getRefQP(uint32_t currAbsIdxInCTU) const;
251 uint32_t getInterMergeCandidates(uint32_t absPartIdx, uint32_t puIdx, MVField (*candMvField)[2], uint8_t* candDir) const;
252 void clipMv(MV& outMV) const;
253 int getPMV(InterNeighbourMV *neighbours, uint32_t reference_list, uint32_t refIdx, MV* amvpCand, MV* pmv) const;
254 void getNeighbourMV(uint32_t puIdx, uint32_t absPartIdx, InterNeighbourMV* neighbours) const;
255 void getIntraTUQtDepthRange(uint32_t tuDepthRange[2], uint32_t absPartIdx) const;
256 void getInterTUQtDepthRange(uint32_t tuDepthRange[2], uint32_t absPartIdx) const;
257 uint32_t getBestRefIdx(uint32_t subPartIdx) const { return ((m_interDir[subPartIdx] & 1) << m_refIdx[0][subPartIdx]) |
258 (((m_interDir[subPartIdx] >> 1) & 1) << (m_refIdx[1][subPartIdx] + 16)); }
259 uint32_t getPUOffset(uint32_t puIdx, uint32_t absPartIdx) const { return (partAddrTable[(int)m_partSize[absPartIdx]][puIdx] << (g_unitSizeDepth - m_cuDepth[absPartIdx]) * 2) >> 4; }
260
261 uint32_t getNumPartInter(uint32_t absPartIdx) const { return nbPartsTable[(int)m_partSize[absPartIdx]]; }
262 bool isIntra(uint32_t absPartIdx) const { return m_predMode[absPartIdx] == MODE_INTRA; }
263 bool isInter(uint32_t absPartIdx) const { return !!(m_predMode[absPartIdx] & MODE_INTER); }
264 bool isSkipped(uint32_t absPartIdx) const { return m_predMode[absPartIdx] == MODE_SKIP; }
265 bool isBipredRestriction() const { return m_log2CUSize[0] == 3 && m_partSize[0] != SIZE_2Nx2N; }
266
267 void getPartIndexAndSize(uint32_t puIdx, uint32_t& absPartIdx, int& puWidth, int& puHeight) const;
268 void getMvField(const CUData* cu, uint32_t absPartIdx, int picList, MVField& mvField) const;
269
270 void getAllowedChromaDir(uint32_t absPartIdx, uint32_t* modeList) const;
271 int getIntraDirLumaPredictor(uint32_t absPartIdx, uint32_t* intraDirPred) const;
272
273 uint32_t getSCUAddr() const { return (m_cuAddr << g_unitSizeDepth * 2) + m_absIdxInCTU; }
274 uint32_t getCtxSplitFlag(uint32_t absPartIdx, uint32_t depth) const;
275 uint32_t getCtxSkipFlag(uint32_t absPartIdx) const;
276 void getTUEntropyCodingParameters(TUEntropyCodingParameters &result, uint32_t absPartIdx, uint32_t log2TrSize, bool bIsLuma) const;
277
278 const CUData* getPULeft(uint32_t& lPartUnitIdx, uint32_t curPartUnitIdx) const;
279 const CUData* getPUAbove(uint32_t& aPartUnitIdx, uint32_t curPartUnitIdx) const;
280 const CUData* getPUAboveLeft(uint32_t& alPartUnitIdx, uint32_t curPartUnitIdx) const;
281 const CUData* getPUAboveRight(uint32_t& arPartUnitIdx, uint32_t curPartUnitIdx) const;
282 const CUData* getPUBelowLeft(uint32_t& blPartUnitIdx, uint32_t curPartUnitIdx) const;
283
284 const CUData* getQpMinCuLeft(uint32_t& lPartUnitIdx, uint32_t currAbsIdxInCTU) const;
285 const CUData* getQpMinCuAbove(uint32_t& aPartUnitIdx, uint32_t currAbsIdxInCTU) const;
286
287 const CUData* getPUAboveRightAdi(uint32_t& arPartUnitIdx, uint32_t curPartUnitIdx, uint32_t partUnitOffset) const;
288 const CUData* getPUBelowLeftAdi(uint32_t& blPartUnitIdx, uint32_t curPartUnitIdx, uint32_t partUnitOffset) const;
289
290 protected:
291
292 template<typename T>
293 void setAllPU(T *p, const T& val, int absPartIdx, int puIdx);
294
295 int8_t getLastCodedQP(uint32_t absPartIdx) const;
296 int getLastValidPartIdx(int absPartIdx) const;
297
298 bool hasEqualMotion(uint32_t absPartIdx, const CUData& candCU, uint32_t candAbsPartIdx) const;
299
300 /* Check whether the current PU and a spatial neighboring PU are in same merge region */
301 bool isDiffMER(int xN, int yN, int xP, int yP) const { return ((xN >> 2) != (xP >> 2)) || ((yN >> 2) != (yP >> 2)); }
302
303 // add possible motion vector predictor candidates
304 bool getDirectPMV(MV& pmv, InterNeighbourMV *neighbours, uint32_t picList, uint32_t refIdx) const;
305 bool getIndirectPMV(MV& outMV, InterNeighbourMV *neighbours, uint32_t reference_list, uint32_t refIdx) const;
306 void getInterNeighbourMV(InterNeighbourMV *neighbour, uint32_t partUnitIdx, MVP_DIR dir) const;
307
308 bool getColMVP(MV& outMV, int& outRefIdx, int picList, int cuAddr, int absPartIdx) const;
309 bool getCollocatedMV(int cuAddr, int partUnitIdx, InterNeighbourMV *neighbour) const;
310
311 MV scaleMvByPOCDist(const MV& inMV, int curPOC, int curRefPOC, int colPOC, int colRefPOC) const;
312
313 void deriveLeftRightTopIdx(uint32_t puIdx, uint32_t& partIdxLT, uint32_t& partIdxRT) const;
314
315 uint32_t deriveCenterIdx(uint32_t puIdx) const;
316 uint32_t deriveRightBottomIdx(uint32_t puIdx) const;
317 uint32_t deriveLeftBottomIdx(uint32_t puIdx) const;
318 };
319
320 // TU settings for entropy encoding
321 struct TUEntropyCodingParameters
322 {
323 const uint16_t *scan;
324 const uint16_t *scanCG;
325 ScanType scanType;
326 uint32_t log2TrSizeCG;
327 uint32_t firstSignificanceMapContext;
328 };
329
330 struct CUDataMemPool
331 {
332 uint8_t* charMemBlock;
333 coeff_t* trCoeffMemBlock;
334 MV* mvMemBlock;
335
336 CUDataMemPool() { charMemBlock = NULL; trCoeffMemBlock = NULL; mvMemBlock = NULL; }
337
338 bool create(uint32_t depth, uint32_t csp, uint32_t numInstances)
339 {
340 uint32_t numPartition = NUM_4x4_PARTITIONS >> (depth * 2);
341 uint32_t cuSize = g_maxCUSize >> depth;
342 uint32_t sizeL = cuSize * cuSize;
343 uint32_t sizeC = sizeL >> (CHROMA_H_SHIFT(csp) + CHROMA_V_SHIFT(csp));
344 CHECKED_MALLOC(trCoeffMemBlock, coeff_t, (sizeL + sizeC * 2) * numInstances);
345 CHECKED_MALLOC(charMemBlock, uint8_t, numPartition * numInstances * CUData::BytesPerPartition);
346 CHECKED_MALLOC(mvMemBlock, MV, numPartition * 4 * numInstances);
347 return true;
348
349 fail:
350 return false;
351 }
352
353 void destroy()
354 {
355 X265_FREE(trCoeffMemBlock);
356 X265_FREE(mvMemBlock);
357 X265_FREE(charMemBlock);
358 }
359 };
360 }
361
362 #endif // ifndef X265_CUDATA_H