view jctvc/TLibEncoder/TEncGOP.cpp @ 0:772086c29cc7

Initial import.
author Matti Hamalainen <ccr@tnsp.org>
date Wed, 16 Nov 2016 11:16:33 +0200
parents
children
line wrap: on
line source

/* The copyright in this software is being made available under the BSD
 * License, included below. This software may be subject to other third party
 * and contributor rights, including patent rights, and no such rights are
 * granted under this license.
 *
 * Copyright (c) 2010-2014, ITU/ISO/IEC
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
 *    be used to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/** \file     TEncGOP.cpp
    \brief    GOP encoder class
*/

#include <list>
#include <algorithm>
#include <functional>

#include "TEncTop.h"
#include "TEncGOP.h"
#include "TEncAnalyze.h"
#include "libmd5/MD5.h"
#include "TLibCommon/SEI.h"
#include "TLibCommon/NAL.h"
#include "NALwrite.h"
#include <time.h>
#include <math.h>

#define VERBOSE_FRAME 0

using namespace std;

#if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST
Bool g_bFinalEncode = false;
#endif

//! \ingroup TLibEncoder
//! \{

// ====================================================================================================================
// Constructor / destructor / initialization / destroy
// ====================================================================================================================
Int getLSB(Int poc, Int maxLSB)
{
  if (poc >= 0)
  {
    return poc % maxLSB;
  }
  else
  {
    return (maxLSB - ((-poc) % maxLSB)) % maxLSB;
  }
}

TEncGOP::TEncGOP()
{
  m_iLastIDR            = 0;
  m_iGopSize            = 0;
  m_iNumPicCoded        = 0; //Niko
  m_bFirst              = true;
#if ALLOW_RECOVERY_POINT_AS_RAP
  m_iLastRecoveryPicPOC = 0;
#endif

  m_pcCfg               = NULL;
  m_pcSliceEncoder      = NULL;
  m_pcListPic           = NULL;

  m_pcEntropyCoder      = NULL;
  m_pcCavlcCoder        = NULL;
  m_pcSbacCoder         = NULL;
  m_pcBinCABAC          = NULL;

  m_bSeqFirst           = true;

  m_bRefreshPending     = 0;
  m_pocCRA            = 0;
  m_numLongTermRefPicSPS = 0;
  ::memset(m_ltRefPicPocLsbSps, 0, sizeof(m_ltRefPicPocLsbSps));
  ::memset(m_ltRefPicUsedByCurrPicFlag, 0, sizeof(m_ltRefPicUsedByCurrPicFlag));
  m_cpbRemovalDelay   = 0;
  m_lastBPSEI         = 0;
  xResetNonNestedSEIPresentFlags();
  xResetNestedSEIPresentFlags();
  m_associatedIRAPType = NAL_UNIT_CODED_SLICE_IDR_N_LP;
  m_associatedIRAPPOC  = 0;
  return;
}

TEncGOP::~TEncGOP()
{
}

/** Create list to contain pointers to CTU start addresses of slice.
 */
Void  TEncGOP::create()
{
  m_bLongtermTestPictureHasBeenCoded = 0;
  m_bLongtermTestPictureHasBeenCoded2 = 0;
}

Void  TEncGOP::destroy()
{
}

Void TEncGOP::init ( TEncTop* pcTEncTop )
{
  m_pcEncTop     = pcTEncTop;
  m_pcCfg                = pcTEncTop;
  m_pcSliceEncoder       = pcTEncTop->getSliceEncoder();
  m_pcListPic            = pcTEncTop->getListPic();

  m_pcEntropyCoder       = pcTEncTop->getEntropyCoder();
  m_pcCavlcCoder         = pcTEncTop->getCavlcCoder();
  m_pcSbacCoder          = pcTEncTop->getSbacCoder();
  m_pcBinCABAC           = pcTEncTop->getBinCABAC();
  m_pcLoopFilter         = pcTEncTop->getLoopFilter();

  m_pcSAO                = pcTEncTop->getSAO();
  m_pcRateCtrl           = pcTEncTop->getRateCtrl();
  m_lastBPSEI          = 0;
  m_totalCoded         = 0;

}

SEIActiveParameterSets* TEncGOP::xCreateSEIActiveParameterSets (TComSPS *sps)
{
  SEIActiveParameterSets *seiActiveParameterSets = new SEIActiveParameterSets();
  seiActiveParameterSets->activeVPSId = m_pcCfg->getVPS()->getVPSId();
  seiActiveParameterSets->m_selfContainedCvsFlag = false;
  seiActiveParameterSets->m_noParameterSetUpdateFlag = false;
  seiActiveParameterSets->numSpsIdsMinus1 = 0;
  seiActiveParameterSets->activeSeqParameterSetId.resize(seiActiveParameterSets->numSpsIdsMinus1 + 1);
  seiActiveParameterSets->activeSeqParameterSetId[0] = sps->getSPSId();
  return seiActiveParameterSets;
}

SEIFramePacking* TEncGOP::xCreateSEIFramePacking()
{
  SEIFramePacking *seiFramePacking = new SEIFramePacking();
  seiFramePacking->m_arrangementId = m_pcCfg->getFramePackingArrangementSEIId();
  seiFramePacking->m_arrangementCancelFlag = 0;
  seiFramePacking->m_arrangementType = m_pcCfg->getFramePackingArrangementSEIType();
  assert((seiFramePacking->m_arrangementType > 2) && (seiFramePacking->m_arrangementType < 6) );
  seiFramePacking->m_quincunxSamplingFlag = m_pcCfg->getFramePackingArrangementSEIQuincunx();
  seiFramePacking->m_contentInterpretationType = m_pcCfg->getFramePackingArrangementSEIInterpretation();
  seiFramePacking->m_spatialFlippingFlag = 0;
  seiFramePacking->m_frame0FlippedFlag = 0;
  seiFramePacking->m_fieldViewsFlag = (seiFramePacking->m_arrangementType == 2);
  seiFramePacking->m_currentFrameIsFrame0Flag = ((seiFramePacking->m_arrangementType == 5) && (m_iNumPicCoded&1));
  seiFramePacking->m_frame0SelfContainedFlag = 0;
  seiFramePacking->m_frame1SelfContainedFlag = 0;
  seiFramePacking->m_frame0GridPositionX = 0;
  seiFramePacking->m_frame0GridPositionY = 0;
  seiFramePacking->m_frame1GridPositionX = 0;
  seiFramePacking->m_frame1GridPositionY = 0;
  seiFramePacking->m_arrangementReservedByte = 0;
  seiFramePacking->m_arrangementPersistenceFlag = true;
  seiFramePacking->m_upsampledAspectRatio = 0;
  return seiFramePacking;
}

SEISegmentedRectFramePacking* TEncGOP::xCreateSEISegmentedRectFramePacking()
{
  SEISegmentedRectFramePacking *seiSegmentedRectFramePacking = new SEISegmentedRectFramePacking();
  seiSegmentedRectFramePacking->m_arrangementCancelFlag = m_pcCfg->getSegmentedRectFramePackingArrangementSEICancel();
  seiSegmentedRectFramePacking->m_contentInterpretationType = m_pcCfg->getSegmentedRectFramePackingArrangementSEIType();
  seiSegmentedRectFramePacking->m_arrangementPersistenceFlag = m_pcCfg->getSegmentedRectFramePackingArrangementSEIPersistence();
  return seiSegmentedRectFramePacking;
}

SEIDisplayOrientation* TEncGOP::xCreateSEIDisplayOrientation()
{
  SEIDisplayOrientation *seiDisplayOrientation = new SEIDisplayOrientation();
  seiDisplayOrientation->cancelFlag = false;
  seiDisplayOrientation->horFlip = false;
  seiDisplayOrientation->verFlip = false;
  seiDisplayOrientation->anticlockwiseRotation = m_pcCfg->getDisplayOrientationSEIAngle();
  return seiDisplayOrientation;
}
SEIToneMappingInfo*  TEncGOP::xCreateSEIToneMappingInfo()
{
  SEIToneMappingInfo *seiToneMappingInfo = new SEIToneMappingInfo();
  seiToneMappingInfo->m_toneMapId = m_pcCfg->getTMISEIToneMapId();
  seiToneMappingInfo->m_toneMapCancelFlag = m_pcCfg->getTMISEIToneMapCancelFlag();
  seiToneMappingInfo->m_toneMapPersistenceFlag = m_pcCfg->getTMISEIToneMapPersistenceFlag();

  seiToneMappingInfo->m_codedDataBitDepth = m_pcCfg->getTMISEICodedDataBitDepth();
  assert(seiToneMappingInfo->m_codedDataBitDepth >= 8 && seiToneMappingInfo->m_codedDataBitDepth <= 14);
  seiToneMappingInfo->m_targetBitDepth = m_pcCfg->getTMISEITargetBitDepth();
  assert(seiToneMappingInfo->m_targetBitDepth >= 1 && seiToneMappingInfo->m_targetBitDepth <= 17);
  seiToneMappingInfo->m_modelId = m_pcCfg->getTMISEIModelID();
  assert(seiToneMappingInfo->m_modelId >=0 &&seiToneMappingInfo->m_modelId<=4);

  switch( seiToneMappingInfo->m_modelId)
  {
  case 0:
    {
      seiToneMappingInfo->m_minValue = m_pcCfg->getTMISEIMinValue();
      seiToneMappingInfo->m_maxValue = m_pcCfg->getTMISEIMaxValue();
      break;
    }
  case 1:
    {
      seiToneMappingInfo->m_sigmoidMidpoint = m_pcCfg->getTMISEISigmoidMidpoint();
      seiToneMappingInfo->m_sigmoidWidth = m_pcCfg->getTMISEISigmoidWidth();
      break;
    }
  case 2:
    {
      UInt num = 1u<<(seiToneMappingInfo->m_targetBitDepth);
      seiToneMappingInfo->m_startOfCodedInterval.resize(num);
      Int* ptmp = m_pcCfg->getTMISEIStartOfCodedInterva();
      if(ptmp)
      {
        for(Int i=0; i<num;i++)
        {
          seiToneMappingInfo->m_startOfCodedInterval[i] = ptmp[i];
        }
      }
      break;
    }
  case 3:
    {
      seiToneMappingInfo->m_numPivots = m_pcCfg->getTMISEINumPivots();
      seiToneMappingInfo->m_codedPivotValue.resize(seiToneMappingInfo->m_numPivots);
      seiToneMappingInfo->m_targetPivotValue.resize(seiToneMappingInfo->m_numPivots);
      Int* ptmpcoded = m_pcCfg->getTMISEICodedPivotValue();
      Int* ptmptarget = m_pcCfg->getTMISEITargetPivotValue();
      if(ptmpcoded&&ptmptarget)
      {
        for(Int i=0; i<(seiToneMappingInfo->m_numPivots);i++)
        {
          seiToneMappingInfo->m_codedPivotValue[i]=ptmpcoded[i];
          seiToneMappingInfo->m_targetPivotValue[i]=ptmptarget[i];
         }
       }
       break;
     }
  case 4:
     {
       seiToneMappingInfo->m_cameraIsoSpeedIdc = m_pcCfg->getTMISEICameraIsoSpeedIdc();
       seiToneMappingInfo->m_cameraIsoSpeedValue = m_pcCfg->getTMISEICameraIsoSpeedValue();
       assert( seiToneMappingInfo->m_cameraIsoSpeedValue !=0 );
       seiToneMappingInfo->m_exposureIndexIdc = m_pcCfg->getTMISEIExposurIndexIdc();
       seiToneMappingInfo->m_exposureIndexValue = m_pcCfg->getTMISEIExposurIndexValue();
       assert( seiToneMappingInfo->m_exposureIndexValue !=0 );
       seiToneMappingInfo->m_exposureCompensationValueSignFlag = m_pcCfg->getTMISEIExposureCompensationValueSignFlag();
       seiToneMappingInfo->m_exposureCompensationValueNumerator = m_pcCfg->getTMISEIExposureCompensationValueNumerator();
       seiToneMappingInfo->m_exposureCompensationValueDenomIdc = m_pcCfg->getTMISEIExposureCompensationValueDenomIdc();
       seiToneMappingInfo->m_refScreenLuminanceWhite = m_pcCfg->getTMISEIRefScreenLuminanceWhite();
       seiToneMappingInfo->m_extendedRangeWhiteLevel = m_pcCfg->getTMISEIExtendedRangeWhiteLevel();
       assert( seiToneMappingInfo->m_extendedRangeWhiteLevel >= 100 );
       seiToneMappingInfo->m_nominalBlackLevelLumaCodeValue = m_pcCfg->getTMISEINominalBlackLevelLumaCodeValue();
       seiToneMappingInfo->m_nominalWhiteLevelLumaCodeValue = m_pcCfg->getTMISEINominalWhiteLevelLumaCodeValue();
       assert( seiToneMappingInfo->m_nominalWhiteLevelLumaCodeValue > seiToneMappingInfo->m_nominalBlackLevelLumaCodeValue );
       seiToneMappingInfo->m_extendedWhiteLevelLumaCodeValue = m_pcCfg->getTMISEIExtendedWhiteLevelLumaCodeValue();
       assert( seiToneMappingInfo->m_extendedWhiteLevelLumaCodeValue >= seiToneMappingInfo->m_nominalWhiteLevelLumaCodeValue );
       break;
    }
  default:
    {
      assert(!"Undefined SEIToneMapModelId");
      break;
    }
  }
  return seiToneMappingInfo;
}

SEITempMotionConstrainedTileSets* TEncGOP::xCreateSEITempMotionConstrainedTileSets ()
{
  TComPPS *pps = m_pcEncTop->getPPS();
  SEITempMotionConstrainedTileSets *sei = new SEITempMotionConstrainedTileSets();
  if(pps->getTilesEnabledFlag())
  {
    sei->m_mc_all_tiles_exact_sample_value_match_flag = false;
    sei->m_each_tile_one_tile_set_flag                = false;
    sei->m_limited_tile_set_display_flag              = false;
    sei->setNumberOfTileSets((pps->getNumTileColumnsMinus1() + 1) * (pps->getNumTileRowsMinus1() + 1));

    for(Int i=0; i < sei->getNumberOfTileSets(); i++)
    {
      sei->tileSetData(i).m_mcts_id = i;  //depends the application;
      sei->tileSetData(i).setNumberOfTileRects(1);

      for(Int j=0; j<sei->tileSetData(i).getNumberOfTileRects(); j++)
      {
        sei->tileSetData(i).topLeftTileIndex(j)     = i+j;
        sei->tileSetData(i).bottomRightTileIndex(j) = i+j;
      }

      sei->tileSetData(i).m_exact_sample_value_match_flag    = false;
      sei->tileSetData(i).m_mcts_tier_level_idc_present_flag = false;
    }
  }
  else
  {
    assert(!"Tile is not enabled");
  }
  return sei;
}

SEIKneeFunctionInfo* TEncGOP::xCreateSEIKneeFunctionInfo()
{
  SEIKneeFunctionInfo *seiKneeFunctionInfo = new SEIKneeFunctionInfo();
  seiKneeFunctionInfo->m_kneeId = m_pcCfg->getKneeSEIId();
  seiKneeFunctionInfo->m_kneeCancelFlag = m_pcCfg->getKneeSEICancelFlag();
  if ( !seiKneeFunctionInfo->m_kneeCancelFlag )
  {
    seiKneeFunctionInfo->m_kneePersistenceFlag = m_pcCfg->getKneeSEIPersistenceFlag();
    seiKneeFunctionInfo->m_kneeInputDrange = m_pcCfg->getKneeSEIInputDrange();
    seiKneeFunctionInfo->m_kneeInputDispLuminance = m_pcCfg->getKneeSEIInputDispLuminance();
    seiKneeFunctionInfo->m_kneeOutputDrange = m_pcCfg->getKneeSEIOutputDrange();
    seiKneeFunctionInfo->m_kneeOutputDispLuminance = m_pcCfg->getKneeSEIOutputDispLuminance();

    seiKneeFunctionInfo->m_kneeNumKneePointsMinus1 = m_pcCfg->getKneeSEINumKneePointsMinus1();
    Int* piInputKneePoint  = m_pcCfg->getKneeSEIInputKneePoint();
    Int* piOutputKneePoint = m_pcCfg->getKneeSEIOutputKneePoint();
    if(piInputKneePoint&&piOutputKneePoint)
    {
      seiKneeFunctionInfo->m_kneeInputKneePoint.resize(seiKneeFunctionInfo->m_kneeNumKneePointsMinus1+1);
      seiKneeFunctionInfo->m_kneeOutputKneePoint.resize(seiKneeFunctionInfo->m_kneeNumKneePointsMinus1+1);
      for(Int i=0; i<=seiKneeFunctionInfo->m_kneeNumKneePointsMinus1; i++)
      {
        seiKneeFunctionInfo->m_kneeInputKneePoint[i] = piInputKneePoint[i];
        seiKneeFunctionInfo->m_kneeOutputKneePoint[i] = piOutputKneePoint[i];
       }
    }
  }
  return seiKneeFunctionInfo;
}

SEIChromaSamplingFilterHint* TEncGOP::xCreateSEIChromaSamplingFilterHint(Bool bChromaLocInfoPresent, Int iHorFilterIndex, Int iVerFilterIndex)
{
  SEIChromaSamplingFilterHint *seiChromaSamplingFilterHint = new SEIChromaSamplingFilterHint();
  seiChromaSamplingFilterHint->m_verChromaFilterIdc = iVerFilterIndex;
  seiChromaSamplingFilterHint->m_horChromaFilterIdc = iHorFilterIndex;
  seiChromaSamplingFilterHint->m_verFilteringProcessFlag = 1;
  seiChromaSamplingFilterHint->m_targetFormatIdc = 3;
  seiChromaSamplingFilterHint->m_perfectReconstructionFlag = false;
  if(seiChromaSamplingFilterHint->m_verChromaFilterIdc == 1)
  {
    seiChromaSamplingFilterHint->m_numVerticalFilters = 1;
    seiChromaSamplingFilterHint->m_verTapLengthMinus1 = (Int*)malloc(seiChromaSamplingFilterHint->m_numVerticalFilters * sizeof(Int));
    seiChromaSamplingFilterHint->m_verFilterCoeff =    (Int**)malloc(seiChromaSamplingFilterHint->m_numVerticalFilters * sizeof(Int*));
    for(Int i = 0; i < seiChromaSamplingFilterHint->m_numVerticalFilters; i ++)
    {
      seiChromaSamplingFilterHint->m_verTapLengthMinus1[i] = 0;
      seiChromaSamplingFilterHint->m_verFilterCoeff[i] = (Int*)malloc(seiChromaSamplingFilterHint->m_verTapLengthMinus1[i] * sizeof(Int));
      for(Int j = 0; j < seiChromaSamplingFilterHint->m_verTapLengthMinus1[i]; j ++)
      {
        seiChromaSamplingFilterHint->m_verFilterCoeff[i][j] = 0;
      }
    }
  }
  else
  {
    seiChromaSamplingFilterHint->m_numVerticalFilters = 0;
    seiChromaSamplingFilterHint->m_verTapLengthMinus1 = NULL;
    seiChromaSamplingFilterHint->m_verFilterCoeff = NULL;
  }
  if(seiChromaSamplingFilterHint->m_horChromaFilterIdc == 1)
  {
    seiChromaSamplingFilterHint->m_numHorizontalFilters = 1;
    seiChromaSamplingFilterHint->m_horTapLengthMinus1 = (Int*)malloc(seiChromaSamplingFilterHint->m_numHorizontalFilters * sizeof(Int));
    seiChromaSamplingFilterHint->m_horFilterCoeff = (Int**)malloc(seiChromaSamplingFilterHint->m_numHorizontalFilters * sizeof(Int*));
    for(Int i = 0; i < seiChromaSamplingFilterHint->m_numHorizontalFilters; i ++)
    {
      seiChromaSamplingFilterHint->m_horTapLengthMinus1[i] = 0;
      seiChromaSamplingFilterHint->m_horFilterCoeff[i] = (Int*)malloc(seiChromaSamplingFilterHint->m_horTapLengthMinus1[i] * sizeof(Int));
      for(Int j = 0; j < seiChromaSamplingFilterHint->m_horTapLengthMinus1[i]; j ++)
      {
        seiChromaSamplingFilterHint->m_horFilterCoeff[i][j] = 0;
      }
    }
  }
  else
  {
    seiChromaSamplingFilterHint->m_numHorizontalFilters = 0;
    seiChromaSamplingFilterHint->m_horTapLengthMinus1 = NULL;
    seiChromaSamplingFilterHint->m_horFilterCoeff = NULL;
  }
  return seiChromaSamplingFilterHint;
}

Void TEncGOP::xCreateLeadingSEIMessages (/*SEIMessages seiMessages,*/ AccessUnit &accessUnit, TComSPS *sps)
{
  OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);

  if(m_pcCfg->getActiveParameterSetsSEIEnabled())
  {
    SEIActiveParameterSets *sei = xCreateSEIActiveParameterSets (sps);

    //nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
    m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
    m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps);
    writeRBSPTrailingBits(nalu.m_Bitstream);
    accessUnit.push_back(new NALUnitEBSP(nalu));
    delete sei;
    m_activeParameterSetSEIPresentInAU = true;
  }

  if(m_pcCfg->getFramePackingArrangementSEIEnabled())
  {
    SEIFramePacking *sei = xCreateSEIFramePacking ();

    nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
    m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
    m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps);
    writeRBSPTrailingBits(nalu.m_Bitstream);
    accessUnit.push_back(new NALUnitEBSP(nalu));
    delete sei;
  }
  if(m_pcCfg->getSegmentedRectFramePackingArrangementSEIEnabled())
  {
    SEISegmentedRectFramePacking *sei = xCreateSEISegmentedRectFramePacking ();

    nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
    m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
    m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps);
    writeRBSPTrailingBits(nalu.m_Bitstream);
    accessUnit.push_back(new NALUnitEBSP(nalu));
    delete sei;
  }
  if (m_pcCfg->getDisplayOrientationSEIAngle())
  {
    SEIDisplayOrientation *sei = xCreateSEIDisplayOrientation();

    nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
    m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
    m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps);
    writeRBSPTrailingBits(nalu.m_Bitstream);
    accessUnit.push_back(new NALUnitEBSP(nalu));
    delete sei;
  }

  if(m_pcCfg->getToneMappingInfoSEIEnabled())
  {
    SEIToneMappingInfo *sei = xCreateSEIToneMappingInfo ();

    nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
    m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
    m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps);
    writeRBSPTrailingBits(nalu.m_Bitstream);
    accessUnit.push_back(new NALUnitEBSP(nalu));
    delete sei;
  }

  if(m_pcCfg->getTMCTSSEIEnabled())
  {
    SEITempMotionConstrainedTileSets *sei_tmcts = xCreateSEITempMotionConstrainedTileSets ();

    nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
    m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
    m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei_tmcts, sps);
    writeRBSPTrailingBits(nalu.m_Bitstream);
    accessUnit.push_back(new NALUnitEBSP(nalu));
    delete sei_tmcts;
  }

  if(m_pcCfg->getTimeCodeSEIEnabled())
  {
    SEITimeCode sei_time_code;
    //  Set data as per command line options
    sei_time_code.numClockTs = m_pcCfg->getNumberOfTimesets();
    for(Int i = 0; i < sei_time_code.numClockTs; i++)
      sei_time_code.timeSetArray[i] = m_pcCfg->getTimeSet(i);

    nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
    m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
    m_seiWriter.writeSEImessage(nalu.m_Bitstream, sei_time_code, sps);
    writeRBSPTrailingBits(nalu.m_Bitstream);
    accessUnit.push_back(new NALUnitEBSP(nalu));
  }

  if(m_pcCfg->getKneeSEIEnabled())
  {
    SEIKneeFunctionInfo *sei = xCreateSEIKneeFunctionInfo();

    nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
    m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
    m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps);
    writeRBSPTrailingBits(nalu.m_Bitstream);
    accessUnit.push_back(new NALUnitEBSP(nalu));
    delete sei;
  }
    
  if(m_pcCfg->getMasteringDisplaySEI().colourVolumeSEIEnabled)
  {
    const TComSEIMasteringDisplay &seiCfg=m_pcCfg->getMasteringDisplaySEI();
    SEIMasteringDisplayColourVolume mdcv;
    mdcv.values = seiCfg;

    nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
    m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
    m_seiWriter.writeSEImessage(nalu.m_Bitstream, mdcv, sps);
    writeRBSPTrailingBits(nalu.m_Bitstream);
    accessUnit.push_back(new NALUnitEBSP(nalu));
      
  }
}

// ====================================================================================================================
// Public member functions
// ====================================================================================================================
Void TEncGOP::compressGOP( Int iPOCLast, Int iNumPicRcvd, TComList<TComPic*>& rcListPic,
                           TComList<TComPicYuv*>& rcListPicYuvRecOut, std::list<AccessUnit>& accessUnitsInGOP,
                           Bool isField, Bool isTff, const InputColourSpaceConversion snr_conversion, const Bool printFrameMSE )
{
  // TODO: Split this function up.

  TComPic*        pcPic = NULL;
  TComPicYuv*     pcPicYuvRecOut;
  TComSlice*      pcSlice;
  TComOutputBitstream  *pcBitstreamRedirect;
  pcBitstreamRedirect = new TComOutputBitstream;
  AccessUnit::iterator  itLocationToPushSliceHeaderNALU; // used to store location where NALU containing slice header is to be inserted

  xInitGOP( iPOCLast, iNumPicRcvd, rcListPic, rcListPicYuvRecOut, isField );

  m_iNumPicCoded = 0;
  SEIPictureTiming pictureTimingSEI;
  Bool writeSOP = m_pcCfg->getSOPDescriptionSEIEnabled();

  // Initialize Scalable Nesting SEI with single layer values
  SEIScalableNesting scalableNestingSEI;
  scalableNestingSEI.m_bitStreamSubsetFlag           = 1;      // If the nested SEI messages are picture buffereing SEI mesages, picure timing SEI messages or sub-picture timing SEI messages, bitstream_subset_flag shall be equal to 1
  scalableNestingSEI.m_nestingOpFlag                 = 0;
  scalableNestingSEI.m_nestingNumOpsMinus1           = 0;      //nesting_num_ops_minus1
  scalableNestingSEI.m_allLayersFlag                 = 0;
  scalableNestingSEI.m_nestingNoOpMaxTemporalIdPlus1 = 6 + 1;  //nesting_no_op_max_temporal_id_plus1
  scalableNestingSEI.m_nestingNumLayersMinus1        = 1 - 1;  //nesting_num_layers_minus1
  scalableNestingSEI.m_nestingLayerId[0]             = 0;
  scalableNestingSEI.m_callerOwnsSEIs                = true;

  Int picSptDpbOutputDuDelay = 0;
  UInt *accumBitsDU = NULL;
  UInt *accumNalsDU = NULL;
  SEIDecodingUnitInfo decodingUnitInfoSEI;

#if EFFICIENT_FIELD_IRAP
  Int IRAPGOPid = -1;
  Bool IRAPtoReorder = false;
  Bool swapIRAPForward = false;
  if(isField)
  {
    Int pocCurr;
    for ( Int iGOPid=0; iGOPid < m_iGopSize; iGOPid++ )
    {
      // determine actual POC
      if(iPOCLast == 0) //case first frame or first top field
      {
        pocCurr=0;
      }
      else if(iPOCLast == 1 && isField) //case first bottom field, just like the first frame, the poc computation is not right anymore, we set the right value
      {
        pocCurr = 1;
      }
      else
      {
        pocCurr = iPOCLast - iNumPicRcvd + m_pcCfg->getGOPEntry(iGOPid).m_POC - isField;
      }

      // check if POC corresponds to IRAP
      NalUnitType tmpUnitType = getNalUnitType(pocCurr, m_iLastIDR, isField);
      if(tmpUnitType >= NAL_UNIT_CODED_SLICE_BLA_W_LP && tmpUnitType <= NAL_UNIT_CODED_SLICE_CRA) // if picture is an IRAP
      {
        if(pocCurr%2 == 0 && iGOPid < m_iGopSize-1 && m_pcCfg->getGOPEntry(iGOPid).m_POC == m_pcCfg->getGOPEntry(iGOPid+1).m_POC-1)
        { // if top field and following picture in enc order is associated bottom field
          IRAPGOPid = iGOPid;
          IRAPtoReorder = true;
          swapIRAPForward = true; 
          break;
        }
        if(pocCurr%2 != 0 && iGOPid > 0 && m_pcCfg->getGOPEntry(iGOPid).m_POC == m_pcCfg->getGOPEntry(iGOPid-1).m_POC+1)
        {
          // if picture is an IRAP remember to process it first
          IRAPGOPid = iGOPid;
          IRAPtoReorder = true;
          swapIRAPForward = false; 
          break;
        }
      }
    }
  }
#endif
  // reset flag indicating whether pictures have been encoded
  for ( Int iGOPid=0; iGOPid < m_iGopSize; iGOPid++ )
  {
    m_pcCfg->setEncodedFlag(iGOPid, false);
  }

  for ( Int iGOPid=0; iGOPid < m_iGopSize; iGOPid++ )
  {
#if EFFICIENT_FIELD_IRAP
    if(IRAPtoReorder)
    {
      if(swapIRAPForward)
      {
        if(iGOPid == IRAPGOPid)
        {
          iGOPid = IRAPGOPid +1;
        }
        else if(iGOPid == IRAPGOPid +1)
        {
          iGOPid = IRAPGOPid;
        }
      }
      else
      {
        if(iGOPid == IRAPGOPid -1)
        {
          iGOPid = IRAPGOPid;
        }
        else if(iGOPid == IRAPGOPid)
        {
          iGOPid = IRAPGOPid -1;
        }
      }
    }
#endif

    UInt uiColDir = 1;
    //-- For time output for each slice
    clock_t iBeforeTime = clock();

    //select uiColDir
    Int iCloseLeft=1, iCloseRight=-1;
    for(Int i = 0; i<m_pcCfg->getGOPEntry(iGOPid).m_numRefPics; i++)
    {
      Int iRef = m_pcCfg->getGOPEntry(iGOPid).m_referencePics[i];
      if(iRef>0&&(iRef<iCloseRight||iCloseRight==-1))
      {
        iCloseRight=iRef;
      }
      else if(iRef<0&&(iRef>iCloseLeft||iCloseLeft==1))
      {
        iCloseLeft=iRef;
      }
    }
    if(iCloseRight>-1)
    {
      iCloseRight=iCloseRight+m_pcCfg->getGOPEntry(iGOPid).m_POC-1;
    }
    if(iCloseLeft<1)
    {
      iCloseLeft=iCloseLeft+m_pcCfg->getGOPEntry(iGOPid).m_POC-1;
      while(iCloseLeft<0)
      {
        iCloseLeft+=m_iGopSize;
      }
    }
    Int iLeftQP=0, iRightQP=0;
    for(Int i=0; i<m_iGopSize; i++)
    {
      if(m_pcCfg->getGOPEntry(i).m_POC==(iCloseLeft%m_iGopSize)+1)
      {
        iLeftQP= m_pcCfg->getGOPEntry(i).m_QPOffset;
      }
      if (m_pcCfg->getGOPEntry(i).m_POC==(iCloseRight%m_iGopSize)+1)
      {
        iRightQP=m_pcCfg->getGOPEntry(i).m_QPOffset;
      }
    }
    if(iCloseRight>-1&&iRightQP<iLeftQP)
    {
      uiColDir=0;
    }

    /////////////////////////////////////////////////////////////////////////////////////////////////// Initial to start encoding
    Int iTimeOffset;
    Int pocCurr;

    if(iPOCLast == 0) //case first frame or first top field
    {
      pocCurr=0;
      iTimeOffset = 1;
    }
    else if(iPOCLast == 1 && isField) //case first bottom field, just like the first frame, the poc computation is not right anymore, we set the right value
    {
      pocCurr = 1;
      iTimeOffset = 1;
    }
    else
    {
      pocCurr = iPOCLast - iNumPicRcvd + m_pcCfg->getGOPEntry(iGOPid).m_POC - ((isField && m_iGopSize>1) ? 1:0);
      iTimeOffset = m_pcCfg->getGOPEntry(iGOPid).m_POC;
    }

    if(pocCurr>=m_pcCfg->getFramesToBeEncoded())
    {
#if EFFICIENT_FIELD_IRAP
      if(IRAPtoReorder)
      {
        if(swapIRAPForward)
        {
          if(iGOPid == IRAPGOPid)
          {
            iGOPid = IRAPGOPid +1;
            IRAPtoReorder = false;
          }
          else if(iGOPid == IRAPGOPid +1)
          {
            iGOPid --;
          }
        }
        else
        {
          if(iGOPid == IRAPGOPid)
          {
            iGOPid = IRAPGOPid -1;
          }
          else if(iGOPid == IRAPGOPid -1)
          {
            iGOPid = IRAPGOPid;
            IRAPtoReorder = false;
          }
        }
      }
#endif
      continue;
    }

    if( getNalUnitType(pocCurr, m_iLastIDR, isField) == NAL_UNIT_CODED_SLICE_IDR_W_RADL || getNalUnitType(pocCurr, m_iLastIDR, isField) == NAL_UNIT_CODED_SLICE_IDR_N_LP )
    {
      m_iLastIDR = pocCurr;
    }
    // start a new access unit: create an entry in the list of output access units
    accessUnitsInGOP.push_back(AccessUnit());
    AccessUnit& accessUnit = accessUnitsInGOP.back();
    xGetBuffer( rcListPic, rcListPicYuvRecOut, iNumPicRcvd, iTimeOffset, pcPic, pcPicYuvRecOut, pocCurr, isField );

    //  Slice data initialization
    pcPic->clearSliceBuffer();
    assert(pcPic->getNumAllocatedSlice() == 1);
    m_pcSliceEncoder->setSliceIdx(0);
    pcPic->setCurrSliceIdx(0);

    m_pcSliceEncoder->initEncSlice ( pcPic, iPOCLast, pocCurr, iNumPicRcvd, iGOPid, pcSlice, m_pcEncTop->getSPS(), m_pcEncTop->getPPS(), isField );

    //Set Frame/Field coding
    pcSlice->getPic()->setField(isField);

    pcSlice->setLastIDR(m_iLastIDR);
    pcSlice->setSliceIdx(0);
    //set default slice level flag to the same as SPS level flag
    pcSlice->setLFCrossSliceBoundaryFlag(  pcSlice->getPPS()->getLoopFilterAcrossSlicesEnabledFlag()  );
    pcSlice->setScalingList ( m_pcEncTop->getScalingList()  );
    if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_OFF)
    {
      m_pcEncTop->getTrQuant()->setFlatScalingList(pcSlice->getSPS()->getChromaFormatIdc());
      m_pcEncTop->getTrQuant()->setUseScalingList(false);
      m_pcEncTop->getSPS()->setScalingListPresentFlag(false);
      m_pcEncTop->getPPS()->setScalingListPresentFlag(false);
    }
    else if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_DEFAULT)
    {
      pcSlice->setDefaultScalingList ();
      m_pcEncTop->getSPS()->setScalingListPresentFlag(false);
      m_pcEncTop->getPPS()->setScalingListPresentFlag(false);
      m_pcEncTop->getTrQuant()->setScalingList(pcSlice->getScalingList(), pcSlice->getSPS()->getChromaFormatIdc());
      m_pcEncTop->getTrQuant()->setUseScalingList(true);
    }
    else if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_FILE_READ)
    {
      pcSlice->setDefaultScalingList ();
      if(pcSlice->getScalingList()->xParseScalingList(m_pcCfg->getScalingListFile()))
      {
        Bool bParsedScalingList=false; // Use of boolean so that assertion outputs useful string
        assert(bParsedScalingList);
        exit(1);
      }
      pcSlice->getScalingList()->checkDcOfMatrix();
      m_pcEncTop->getSPS()->setScalingListPresentFlag(pcSlice->checkDefaultScalingList());
      m_pcEncTop->getPPS()->setScalingListPresentFlag(false);
      m_pcEncTop->getTrQuant()->setScalingList(pcSlice->getScalingList(), pcSlice->getSPS()->getChromaFormatIdc());
      m_pcEncTop->getTrQuant()->setUseScalingList(true);
    }
    else
    {
      printf("error : ScalingList == %d no support\n",m_pcEncTop->getUseScalingListId());
      assert(0);
    }

    if(pcSlice->getSliceType()==B_SLICE&&m_pcCfg->getGOPEntry(iGOPid).m_sliceType=='P')
    {
      pcSlice->setSliceType(P_SLICE);
    }
    if(pcSlice->getSliceType()==B_SLICE&&m_pcCfg->getGOPEntry(iGOPid).m_sliceType=='I')
    {
      pcSlice->setSliceType(I_SLICE);
    }
    
    // Set the nal unit type
    pcSlice->setNalUnitType(getNalUnitType(pocCurr, m_iLastIDR, isField));
    if(pcSlice->getTemporalLayerNonReferenceFlag())
    {
      if (pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_TRAIL_R &&
          !(m_iGopSize == 1 && pcSlice->getSliceType() == I_SLICE))
        // Add this condition to avoid POC issues with encoder_intra_main.cfg configuration (see #1127 in bug tracker)
      {
        pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TRAIL_N);
      }
      if(pcSlice->getNalUnitType()==NAL_UNIT_CODED_SLICE_RADL_R)
      {
        pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_RADL_N);
      }
      if(pcSlice->getNalUnitType()==NAL_UNIT_CODED_SLICE_RASL_R)
      {
        pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_RASL_N);
      }
    }

#if EFFICIENT_FIELD_IRAP
    if ( pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP
      || pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL
      || pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP
      || pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL
      || pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP
      || pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA )  // IRAP picture
    {
      m_associatedIRAPType = pcSlice->getNalUnitType();
      m_associatedIRAPPOC = pocCurr;
    }
    pcSlice->setAssociatedIRAPType(m_associatedIRAPType);
    pcSlice->setAssociatedIRAPPOC(m_associatedIRAPPOC);
#endif
    // Do decoding refresh marking if any
    pcSlice->decodingRefreshMarking(m_pocCRA, m_bRefreshPending, rcListPic);
    m_pcEncTop->selectReferencePictureSet(pcSlice, pocCurr, iGOPid);
    pcSlice->getRPS()->setNumberOfLongtermPictures(0);
#if !EFFICIENT_FIELD_IRAP
    if ( pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP
      || pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL
      || pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP
      || pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL
      || pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP
      || pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA )  // IRAP picture
    {
      m_associatedIRAPType = pcSlice->getNalUnitType();
      m_associatedIRAPPOC = pocCurr;
    }
    pcSlice->setAssociatedIRAPType(m_associatedIRAPType);
    pcSlice->setAssociatedIRAPPOC(m_associatedIRAPPOC);
#endif

#if ALLOW_RECOVERY_POINT_AS_RAP
    if ((pcSlice->checkThatAllRefPicsAreAvailable(rcListPic, pcSlice->getRPS(), false, m_iLastRecoveryPicPOC, m_pcCfg->getDecodingRefreshType() == 3) != 0) || (pcSlice->isIRAP()) 
#if EFFICIENT_FIELD_IRAP
      || (isField && pcSlice->getAssociatedIRAPType() >= NAL_UNIT_CODED_SLICE_BLA_W_LP && pcSlice->getAssociatedIRAPType() <= NAL_UNIT_CODED_SLICE_CRA && pcSlice->getAssociatedIRAPPOC() == pcSlice->getPOC()+1)
#endif
      )
    {
      pcSlice->createExplicitReferencePictureSetFromReference(rcListPic, pcSlice->getRPS(), pcSlice->isIRAP(), m_iLastRecoveryPicPOC, m_pcCfg->getDecodingRefreshType() == 3);
    }
#else
    if ((pcSlice->checkThatAllRefPicsAreAvailable(rcListPic, pcSlice->getRPS(), false) != 0) || (pcSlice->isIRAP()))
    {
      pcSlice->createExplicitReferencePictureSetFromReference(rcListPic, pcSlice->getRPS(), pcSlice->isIRAP());
    }
#endif

    pcSlice->applyReferencePictureSet(rcListPic, pcSlice->getRPS());

    if(pcSlice->getTLayer() > 0 
      &&  !( pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_RADL_N     // Check if not a leading picture
          || pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_RADL_R
          || pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_RASL_N
          || pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_RASL_R )
        )
    {
      if(pcSlice->isTemporalLayerSwitchingPoint(rcListPic) || pcSlice->getSPS()->getTemporalIdNestingFlag())
      {
        if(pcSlice->getTemporalLayerNonReferenceFlag())
        {
          pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TSA_N);
        }
        else
        {
          pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TSA_R);
        }
      }
      else if(pcSlice->isStepwiseTemporalLayerSwitchingPointCandidate(rcListPic))
      {
        Bool isSTSA=true;
        for(Int ii=iGOPid+1;(ii<m_pcCfg->getGOPSize() && isSTSA==true);ii++)
        {
          Int lTid= m_pcCfg->getGOPEntry(ii).m_temporalId;
          if(lTid==pcSlice->getTLayer())
          {
            TComReferencePictureSet* nRPS = pcSlice->getSPS()->getRPSList()->getReferencePictureSet(ii);
            for(Int jj=0;jj<nRPS->getNumberOfPictures();jj++)
            {
              if(nRPS->getUsed(jj))
              {
                Int tPoc=m_pcCfg->getGOPEntry(ii).m_POC+nRPS->getDeltaPOC(jj);
                Int kk=0;
                for(kk=0;kk<m_pcCfg->getGOPSize();kk++)
                {
                  if(m_pcCfg->getGOPEntry(kk).m_POC==tPoc)
                    break;
                }
                Int tTid=m_pcCfg->getGOPEntry(kk).m_temporalId;
                if(tTid >= pcSlice->getTLayer())
                {
                  isSTSA=false;
                  break;
                }
              }
            }
          }
        }
        if(isSTSA==true)
        {
          if(pcSlice->getTemporalLayerNonReferenceFlag())
          {
            pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_STSA_N);
          }
          else
          {
            pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_STSA_R);
          }
        }
      }
    }
    arrangeLongtermPicturesInRPS(pcSlice, rcListPic);
    TComRefPicListModification* refPicListModification = pcSlice->getRefPicListModification();
    refPicListModification->setRefPicListModificationFlagL0(0);
    refPicListModification->setRefPicListModificationFlagL1(0);
    pcSlice->setNumRefIdx(REF_PIC_LIST_0,min(m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive,pcSlice->getRPS()->getNumberOfPictures()));
    pcSlice->setNumRefIdx(REF_PIC_LIST_1,min(m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive,pcSlice->getRPS()->getNumberOfPictures()));

#if ADAPTIVE_QP_SELECTION
    pcSlice->setTrQuant( m_pcEncTop->getTrQuant() );
#endif

    //  Set reference list
    pcSlice->setRefPicList ( rcListPic );

    //  Slice info. refinement
    if ( (pcSlice->getSliceType() == B_SLICE) && (pcSlice->getNumRefIdx(REF_PIC_LIST_1) == 0) )
    {
      pcSlice->setSliceType ( P_SLICE );
    }

    if (pcSlice->getSliceType() == B_SLICE)
    {
      pcSlice->setColFromL0Flag(1-uiColDir);
      Bool bLowDelay = true;
      Int  iCurrPOC  = pcSlice->getPOC();
      Int iRefIdx = 0;

      for (iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(REF_PIC_LIST_0) && bLowDelay; iRefIdx++)
      {
        if ( pcSlice->getRefPic(REF_PIC_LIST_0, iRefIdx)->getPOC() > iCurrPOC )
        {
          bLowDelay = false;
        }
      }
      for (iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(REF_PIC_LIST_1) && bLowDelay; iRefIdx++)
      {
        if ( pcSlice->getRefPic(REF_PIC_LIST_1, iRefIdx)->getPOC() > iCurrPOC )
        {
          bLowDelay = false;
        }
      }

      pcSlice->setCheckLDC(bLowDelay);
    }
    else
    {
      pcSlice->setCheckLDC(true);
    }

    uiColDir = 1-uiColDir;

    //-------------------------------------------------------------
    pcSlice->setRefPOCList();

    pcSlice->setList1IdxToList0Idx();

    if (m_pcEncTop->getTMVPModeId() == 2)
    {
      if (iGOPid == 0) // first picture in SOP (i.e. forward B)
      {
        pcSlice->setEnableTMVPFlag(0);
      }
      else
      {
        // Note: pcSlice->getColFromL0Flag() is assumed to be always 0 and getcolRefIdx() is always 0.
        pcSlice->setEnableTMVPFlag(1);
      }
      pcSlice->getSPS()->setTMVPFlagsPresent(1);
    }
    else if (m_pcEncTop->getTMVPModeId() == 1)
    {
      pcSlice->getSPS()->setTMVPFlagsPresent(1);
      pcSlice->setEnableTMVPFlag(1);
    }
    else
    {
      pcSlice->getSPS()->setTMVPFlagsPresent(0);
      pcSlice->setEnableTMVPFlag(0);
    }
    /////////////////////////////////////////////////////////////////////////////////////////////////// Compress a slice
    //  Slice compression
    if (m_pcCfg->getUseASR())
    {
      m_pcSliceEncoder->setSearchRange(pcSlice);
    }

    Bool bGPBcheck=false;
    if ( pcSlice->getSliceType() == B_SLICE)
    {
      if ( pcSlice->getNumRefIdx(RefPicList( 0 ) ) == pcSlice->getNumRefIdx(RefPicList( 1 ) ) )
      {
        bGPBcheck=true;
        Int i;
        for ( i=0; i < pcSlice->getNumRefIdx(RefPicList( 1 ) ); i++ )
        {
          if ( pcSlice->getRefPOC(RefPicList(1), i) != pcSlice->getRefPOC(RefPicList(0), i) )
          {
            bGPBcheck=false;
            break;
          }
        }
      }
    }
    if(bGPBcheck)
    {
      pcSlice->setMvdL1ZeroFlag(true);
    }
    else
    {
      pcSlice->setMvdL1ZeroFlag(false);
    }
    pcPic->getSlice(pcSlice->getSliceIdx())->setMvdL1ZeroFlag(pcSlice->getMvdL1ZeroFlag());

    pcPic->getPicSym()->initTiles(pcSlice->getPPS());
    pcPic->getPicSym()->initCtuTsRsAddrMaps();

    Double lambda            = 0.0;
    Int actualHeadBits       = 0;
    Int actualTotalBits      = 0;
    Int estimatedBits        = 0;
    Int tmpBitsBeforeWriting = 0;
    if ( m_pcCfg->getUseRateCtrl() )
    {
      Int frameLevel = m_pcRateCtrl->getRCSeq()->getGOPID2Level( iGOPid );
      if ( pcPic->getSlice(0)->getSliceType() == I_SLICE )
      {
        frameLevel = 0;
      }
      m_pcRateCtrl->initRCPic( frameLevel );
      estimatedBits = m_pcRateCtrl->getRCPic()->getTargetBits();

      Int sliceQP = m_pcCfg->getInitialQP();
      if ( ( pcSlice->getPOC() == 0 && m_pcCfg->getInitialQP() > 0 ) || ( frameLevel == 0 && m_pcCfg->getForceIntraQP() ) ) // QP is specified
      {
        Int    NumberBFrames = ( m_pcCfg->getGOPSize() - 1 );
        Double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(Double)NumberBFrames );
        Double dQPFactor     = 0.57*dLambda_scale;
        Int    SHIFT_QP      = 12;
        Int    bitdepth_luma_qp_scale = 0;
        Double qp_temp = (Double) sliceQP + bitdepth_luma_qp_scale - SHIFT_QP;
        lambda = dQPFactor*pow( 2.0, qp_temp/3.0 );
      }
      else if ( frameLevel == 0 )   // intra case, but use the model
      {
        m_pcSliceEncoder->calCostSliceI(pcPic);

        if ( m_pcCfg->getIntraPeriod() != 1 )   // do not refine allocated bits for all intra case
        {
          Int bits = m_pcRateCtrl->getRCSeq()->getLeftAverageBits();
          bits = m_pcRateCtrl->getRCPic()->getRefineBitsForIntra( bits );
          if ( bits < 200 )
          {
            bits = 200;
          }
          m_pcRateCtrl->getRCPic()->setTargetBits( bits );
        }

        list<TEncRCPic*> listPreviousPicture = m_pcRateCtrl->getPicList();
        m_pcRateCtrl->getRCPic()->getLCUInitTargetBits();
        lambda  = m_pcRateCtrl->getRCPic()->estimatePicLambda( listPreviousPicture, pcSlice->getSliceType());
        sliceQP = m_pcRateCtrl->getRCPic()->estimatePicQP( lambda, listPreviousPicture );
      }
      else    // normal case
      {
        list<TEncRCPic*> listPreviousPicture = m_pcRateCtrl->getPicList();
        lambda  = m_pcRateCtrl->getRCPic()->estimatePicLambda( listPreviousPicture, pcSlice->getSliceType());
        sliceQP = m_pcRateCtrl->getRCPic()->estimatePicQP( lambda, listPreviousPicture );
      }

      sliceQP = Clip3( -pcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA), MAX_QP, sliceQP );
      m_pcRateCtrl->getRCPic()->setPicEstQP( sliceQP );

      m_pcSliceEncoder->resetQP( pcPic, sliceQP, lambda );
    }

    UInt uiNumSliceSegments = 1;


    // Allocate some coders, now the number of tiles are known.
    const Int numSubstreams = pcSlice->getPPS()->getNumSubstreams();
    std::vector<TComOutputBitstream> substreamsOut(numSubstreams);

    // now compress (trial encode) the various slice segments (slices, and dependent slices)
    {
      const UInt numberOfCtusInFrame=pcPic->getPicSym()->getNumberOfCtusInFrame();
      pcSlice->setSliceCurStartCtuTsAddr( 0 );
      pcSlice->setSliceSegmentCurStartCtuTsAddr( 0 );

      for(UInt nextCtuTsAddr = 0; nextCtuTsAddr < numberOfCtusInFrame; )
      {
        m_pcSliceEncoder->precompressSlice( pcPic );
        m_pcSliceEncoder->compressSlice   ( pcPic );

        const UInt curSliceSegmentEnd = pcSlice->getSliceSegmentCurEndCtuTsAddr();
        if (curSliceSegmentEnd < numberOfCtusInFrame)
        {
          const Bool bNextSegmentIsDependentSlice=curSliceSegmentEnd<pcSlice->getSliceCurEndCtuTsAddr();
          const UInt sliceBits=pcSlice->getSliceBits();
          pcPic->allocateNewSlice();
          // prepare for next slice
          pcPic->setCurrSliceIdx                    ( uiNumSliceSegments );
          m_pcSliceEncoder->setSliceIdx             ( uiNumSliceSegments   );
          pcSlice = pcPic->getSlice                 ( uiNumSliceSegments   );
          pcSlice->copySliceInfo                    ( pcPic->getSlice(uiNumSliceSegments-1)  );
          pcSlice->setSliceIdx                      ( uiNumSliceSegments   );
          if (bNextSegmentIsDependentSlice)
          {
            pcSlice->setSliceBits(sliceBits);
          }
          else
          {
            pcSlice->setSliceCurStartCtuTsAddr      ( curSliceSegmentEnd );
            pcSlice->setSliceBits(0);
          }
          pcSlice->setDependentSliceSegmentFlag(bNextSegmentIsDependentSlice);
          pcSlice->setSliceSegmentCurStartCtuTsAddr ( curSliceSegmentEnd );
          uiNumSliceSegments ++;
        }
        nextCtuTsAddr = curSliceSegmentEnd;
      }
    }

    pcSlice = pcPic->getSlice(0);

    // SAO parameter estimation using non-deblocked pixels for CTU bottom and right boundary areas
    if( pcSlice->getSPS()->getUseSAO() && m_pcCfg->getSaoCtuBoundary() )
    {
      m_pcSAO->getPreDBFStatistics(pcPic);
    }

    //-- Loop filter
    Bool bLFCrossTileBoundary = pcSlice->getPPS()->getLoopFilterAcrossTilesEnabledFlag();
    m_pcLoopFilter->setCfg(bLFCrossTileBoundary);
    if ( m_pcCfg->getDeblockingFilterMetric() )
    {
      dblMetric(pcPic, uiNumSliceSegments);
    }
    m_pcLoopFilter->loopFilterPic( pcPic );

    /////////////////////////////////////////////////////////////////////////////////////////////////// File writing
    // Set entropy coder
    m_pcEntropyCoder->setEntropyCoder   ( m_pcCavlcCoder, pcSlice );

    /* write various header sets. */
    if ( m_bSeqFirst )
    {
      OutputNALUnit nalu(NAL_UNIT_VPS);
      m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
      m_pcEntropyCoder->encodeVPS(m_pcEncTop->getVPS());
      writeRBSPTrailingBits(nalu.m_Bitstream);
      accessUnit.push_back(new NALUnitEBSP(nalu));
      actualTotalBits += UInt(accessUnit.back()->m_nalUnitData.str().size()) * 8;

      nalu = NALUnit(NAL_UNIT_SPS);
      m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
      if (m_bSeqFirst)
      {
        pcSlice->getSPS()->setNumLongTermRefPicSPS(m_numLongTermRefPicSPS);
        assert (m_numLongTermRefPicSPS <= MAX_NUM_LONG_TERM_REF_PICS);
        for (Int k = 0; k < m_numLongTermRefPicSPS; k++)
        {
          pcSlice->getSPS()->setLtRefPicPocLsbSps(k, m_ltRefPicPocLsbSps[k]);
          pcSlice->getSPS()->setUsedByCurrPicLtSPSFlag(k, m_ltRefPicUsedByCurrPicFlag[k]);
        }
      }
      if( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() )
      {
        UInt maxCU = m_pcCfg->getSliceArgument() >> ( pcSlice->getSPS()->getMaxCUDepth() << 1);
        UInt numDU = ( m_pcCfg->getSliceMode() == FIXED_NUMBER_OF_CTU ) ? ( pcPic->getNumberOfCtusInFrame() / maxCU ) : ( 0 );
        if( pcPic->getNumberOfCtusInFrame() % maxCU != 0 || numDU == 0 )
        {
          numDU ++;
        }
        pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->setNumDU( numDU );
        pcSlice->getSPS()->setHrdParameters( m_pcCfg->getFrameRate(), numDU, m_pcCfg->getTargetBitrate(), ( m_pcCfg->getIntraPeriod() > 0 ) );
      }
      if( m_pcCfg->getBufferingPeriodSEIEnabled() || m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() )
      {
        pcSlice->getSPS()->getVuiParameters()->setHrdParametersPresentFlag( true );
      }
      m_pcEntropyCoder->encodeSPS(pcSlice->getSPS());
      writeRBSPTrailingBits(nalu.m_Bitstream);
      accessUnit.push_back(new NALUnitEBSP(nalu));
      actualTotalBits += UInt(accessUnit.back()->m_nalUnitData.str().size()) * 8;

      nalu = NALUnit(NAL_UNIT_PPS);
      m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
      m_pcEntropyCoder->encodePPS(pcSlice->getPPS());
      writeRBSPTrailingBits(nalu.m_Bitstream);
      accessUnit.push_back(new NALUnitEBSP(nalu));
      actualTotalBits += UInt(accessUnit.back()->m_nalUnitData.str().size()) * 8;

      xCreateLeadingSEIMessages(accessUnit, pcSlice->getSPS());

      m_bSeqFirst = false;
    }

    if (writeSOP) // write SOP description SEI (if enabled) at the beginning of GOP
    {
      Int SOPcurrPOC = pocCurr;

      OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
      m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
      m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);

      SEISOPDescription SOPDescriptionSEI;
      SOPDescriptionSEI.m_sopSeqParameterSetId = pcSlice->getSPS()->getSPSId();

      UInt i = 0;
      UInt prevEntryId = iGOPid;
      for (Int j = iGOPid; j < m_iGopSize; j++)
      {
        Int deltaPOC = m_pcCfg->getGOPEntry(j).m_POC - m_pcCfg->getGOPEntry(prevEntryId).m_POC;
        if ((SOPcurrPOC + deltaPOC) < m_pcCfg->getFramesToBeEncoded())
        {
          SOPcurrPOC += deltaPOC;
          SOPDescriptionSEI.m_sopDescVclNaluType[i] = getNalUnitType(SOPcurrPOC, m_iLastIDR, isField);
          SOPDescriptionSEI.m_sopDescTemporalId[i] = m_pcCfg->getGOPEntry(j).m_temporalId;
          SOPDescriptionSEI.m_sopDescStRpsIdx[i] = m_pcEncTop->getReferencePictureSetIdxForSOP(pcSlice, SOPcurrPOC, j);
          SOPDescriptionSEI.m_sopDescPocDelta[i] = deltaPOC;

          prevEntryId = j;
          i++;
        }
      }

      SOPDescriptionSEI.m_numPicsInSopMinus1 = i - 1;

      m_seiWriter.writeSEImessage( nalu.m_Bitstream, SOPDescriptionSEI, pcSlice->getSPS());
      writeRBSPTrailingBits(nalu.m_Bitstream);
      accessUnit.push_back(new NALUnitEBSP(nalu));

      writeSOP = false;
    }

    if( ( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() ) &&
        ( pcSlice->getSPS()->getVuiParametersPresentFlag() ) &&
        ( ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNalHrdParametersPresentFlag() )
       || ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getVclHrdParametersPresentFlag() ) ) )
    {
      if( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getSubPicCpbParamsPresentFlag() )
      {
        UInt numDU = pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNumDU();
        pictureTimingSEI.m_numDecodingUnitsMinus1     = ( numDU - 1 );
        pictureTimingSEI.m_duCommonCpbRemovalDelayFlag = false;

        if( pictureTimingSEI.m_numNalusInDuMinus1 == NULL )
        {
          pictureTimingSEI.m_numNalusInDuMinus1       = new UInt[ numDU ];
        }
        if( pictureTimingSEI.m_duCpbRemovalDelayMinus1  == NULL )
        {
          pictureTimingSEI.m_duCpbRemovalDelayMinus1  = new UInt[ numDU ];
        }
        if( accumBitsDU == NULL )
        {
          accumBitsDU                                  = new UInt[ numDU ];
        }
        if( accumNalsDU == NULL )
        {
          accumNalsDU                                  = new UInt[ numDU ];
        }
      }
      pictureTimingSEI.m_auCpbRemovalDelay = std::min<Int>(std::max<Int>(1, m_totalCoded - m_lastBPSEI), static_cast<Int>(pow(2, static_cast<Double>(pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getCpbRemovalDelayLengthMinus1()+1)))); // Syntax element signalled as minus, hence the .
      pictureTimingSEI.m_picDpbOutputDelay = pcSlice->getSPS()->getNumReorderPics(pcSlice->getSPS()->getMaxTLayers()-1) + pcSlice->getPOC() - m_totalCoded;
#if EFFICIENT_FIELD_IRAP
      if(IRAPGOPid > 0 && IRAPGOPid < m_iGopSize)
      {
        // if pictures have been swapped there is likely one more picture delay on their tid. Very rough approximation
        pictureTimingSEI.m_picDpbOutputDelay ++;
      }
#endif
      Int factor = pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getTickDivisorMinus2() + 2;
      pictureTimingSEI.m_picDpbOutputDuDelay = factor * pictureTimingSEI.m_picDpbOutputDelay;
      if( m_pcCfg->getDecodingUnitInfoSEIEnabled() )
      {
        picSptDpbOutputDuDelay = factor * pictureTimingSEI.m_picDpbOutputDelay;
      }
    }

    if( ( m_pcCfg->getBufferingPeriodSEIEnabled() ) && ( pcSlice->getSliceType() == I_SLICE ) &&
        ( pcSlice->getSPS()->getVuiParametersPresentFlag() ) &&
        ( ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNalHrdParametersPresentFlag() )
       || ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getVclHrdParametersPresentFlag() ) ) )
    {
      OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
      m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
      m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);

      SEIBufferingPeriod sei_buffering_period;

      UInt uiInitialCpbRemovalDelay = (90000/2);                      // 0.5 sec
      sei_buffering_period.m_initialCpbRemovalDelay      [0][0]     = uiInitialCpbRemovalDelay;
      sei_buffering_period.m_initialCpbRemovalDelayOffset[0][0]     = uiInitialCpbRemovalDelay;
      sei_buffering_period.m_initialCpbRemovalDelay      [0][1]     = uiInitialCpbRemovalDelay;
      sei_buffering_period.m_initialCpbRemovalDelayOffset[0][1]     = uiInitialCpbRemovalDelay;

      Double dTmp = (Double)pcSlice->getSPS()->getVuiParameters()->getTimingInfo()->getNumUnitsInTick() / (Double)pcSlice->getSPS()->getVuiParameters()->getTimingInfo()->getTimeScale();

      UInt uiTmp = (UInt)( dTmp * 90000.0 );
      uiInitialCpbRemovalDelay -= uiTmp;
      uiInitialCpbRemovalDelay -= uiTmp / ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getTickDivisorMinus2() + 2 );
      sei_buffering_period.m_initialAltCpbRemovalDelay      [0][0]  = uiInitialCpbRemovalDelay;
      sei_buffering_period.m_initialAltCpbRemovalDelayOffset[0][0]  = uiInitialCpbRemovalDelay;
      sei_buffering_period.m_initialAltCpbRemovalDelay      [0][1]  = uiInitialCpbRemovalDelay;
      sei_buffering_period.m_initialAltCpbRemovalDelayOffset[0][1]  = uiInitialCpbRemovalDelay;

      sei_buffering_period.m_rapCpbParamsPresentFlag              = 0;
      //for the concatenation, it can be set to one during splicing.
      sei_buffering_period.m_concatenationFlag = 0;
      //since the temporal layer HRD is not ready, we assumed it is fixed
      sei_buffering_period.m_auCpbRemovalDelayDelta = 1;

      sei_buffering_period.m_cpbDelayOffset = 0;
      sei_buffering_period.m_dpbDelayOffset = 0;

      m_seiWriter.writeSEImessage( nalu.m_Bitstream, sei_buffering_period, pcSlice->getSPS());
      writeRBSPTrailingBits(nalu.m_Bitstream);

      {
        UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit);
        UInt offsetPosition = m_activeParameterSetSEIPresentInAU;   // Insert BP SEI after APS SEI
        AccessUnit::iterator it = accessUnit.begin();
        for(Int j = 0; j < seiPositionInAu + offsetPosition; j++)
        {
          it++;
        }
        accessUnit.insert(it, new NALUnitEBSP(nalu));
        m_bufferingPeriodSEIPresentInAU = true;
      }

      if (m_pcCfg->getScalableNestingSEIEnabled())
      {
        OutputNALUnit naluTmp(NAL_UNIT_PREFIX_SEI);
        m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
        m_pcEntropyCoder->setBitstream(&naluTmp.m_Bitstream);
        scalableNestingSEI.m_nestedSEIs.clear();
        scalableNestingSEI.m_nestedSEIs.push_back(&sei_buffering_period);
        m_seiWriter.writeSEImessage( naluTmp.m_Bitstream, scalableNestingSEI, pcSlice->getSPS());
        writeRBSPTrailingBits(naluTmp.m_Bitstream);
        UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit);
        UInt offsetPosition = m_activeParameterSetSEIPresentInAU + m_bufferingPeriodSEIPresentInAU + m_pictureTimingSEIPresentInAU;   // Insert BP SEI after non-nested APS, BP and PT SEIs
        AccessUnit::iterator it = accessUnit.begin();
        for(Int j = 0; j < seiPositionInAu + offsetPosition; j++)
        {
          it++;
        }
        accessUnit.insert(it, new NALUnitEBSP(naluTmp));
        m_nestedBufferingPeriodSEIPresentInAU = true;
      }

      m_lastBPSEI = m_totalCoded;
      m_cpbRemovalDelay = 0;
    }
    m_cpbRemovalDelay ++;

    if(pcSlice->getSPS()->getVuiParametersPresentFlag() && m_pcCfg->getChromaSamplingFilterHintEnabled() && ( pcSlice->getSliceType() == I_SLICE ))
    {
      SEIChromaSamplingFilterHint *seiChromaSamplingFilterHint = xCreateSEIChromaSamplingFilterHint(m_pcCfg->getChromaLocInfoPresentFlag(), m_pcCfg->getChromaSamplingHorFilterIdc(), m_pcCfg->getChromaSamplingVerFilterIdc());

      OutputNALUnit naluTmp(NAL_UNIT_PREFIX_SEI); 
      m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
      m_pcEntropyCoder->setBitstream(&naluTmp.m_Bitstream);
      m_seiWriter.writeSEImessage(naluTmp.m_Bitstream, *seiChromaSamplingFilterHint, pcSlice->getSPS()); 
      writeRBSPTrailingBits(naluTmp.m_Bitstream);
      accessUnit.push_back(new NALUnitEBSP(naluTmp));
      delete seiChromaSamplingFilterHint;
    }

    if( ( m_pcEncTop->getRecoveryPointSEIEnabled() ) && ( pcSlice->getSliceType() == I_SLICE ) )
    {
      if( m_pcEncTop->getGradualDecodingRefreshInfoEnabled() && !pcSlice->getRapPicFlag() )
      {
        // Gradual decoding refresh SEI
        OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
        m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
        m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);

        SEIGradualDecodingRefreshInfo seiGradualDecodingRefreshInfo;
        seiGradualDecodingRefreshInfo.m_gdrForegroundFlag = true; // Indicating all "foreground"

        m_seiWriter.writeSEImessage( nalu.m_Bitstream, seiGradualDecodingRefreshInfo, pcSlice->getSPS() );
        writeRBSPTrailingBits(nalu.m_Bitstream);
        accessUnit.push_back(new NALUnitEBSP(nalu));
      }
    // Recovery point SEI
      OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
      m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
      m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);

      SEIRecoveryPoint sei_recovery_point;
      sei_recovery_point.m_recoveryPocCnt    = 0;
      sei_recovery_point.m_exactMatchingFlag = ( pcSlice->getPOC() == 0 ) ? (true) : (false);
      sei_recovery_point.m_brokenLinkFlag    = false;
#if ALLOW_RECOVERY_POINT_AS_RAP
      if(m_pcCfg->getDecodingRefreshType() == 3)
      {
        m_iLastRecoveryPicPOC = pocCurr;
      }
#endif

      m_seiWriter.writeSEImessage( nalu.m_Bitstream, sei_recovery_point, pcSlice->getSPS() );
      writeRBSPTrailingBits(nalu.m_Bitstream);
      accessUnit.push_back(new NALUnitEBSP(nalu));
    }

    if( m_pcEncTop->getNoDisplaySEITLayer() )
    {
      if( pcSlice->getTLayer() >= m_pcEncTop->getNoDisplaySEITLayer() )
      {
        // No display SEI
        OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
        m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
        m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);

        SEINoDisplay seiNoDisplay;
        seiNoDisplay.m_noDisplay = true;

        m_seiWriter.writeSEImessage( nalu.m_Bitstream, seiNoDisplay, pcSlice->getSPS() );
        writeRBSPTrailingBits(nalu.m_Bitstream);
        accessUnit.push_back(new NALUnitEBSP(nalu));
      }
    }

    /* use the main bitstream buffer for storing the marshalled picture */
    m_pcEntropyCoder->setBitstream(NULL);

    pcSlice = pcPic->getSlice(0);

    if (pcSlice->getSPS()->getUseSAO())
    {
      Bool sliceEnabled[MAX_NUM_COMPONENT];
      TComBitCounter tempBitCounter;
      tempBitCounter.resetBits();
      m_pcEncTop->getRDGoOnSbacCoder()->setBitstream(&tempBitCounter);
      m_pcSAO->initRDOCabacCoder(m_pcEncTop->getRDGoOnSbacCoder(), pcSlice);
      m_pcSAO->SAOProcess(pcPic, sliceEnabled, pcPic->getSlice(0)->getLambdas()
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
                          , m_pcCfg->getSaoCtuBoundary()
#endif
                         );
      m_pcSAO->PCMLFDisableProcess(pcPic);
      m_pcEncTop->getRDGoOnSbacCoder()->setBitstream(NULL);

      //assign SAO slice header
      for(Int s=0; s< uiNumSliceSegments; s++)
      {
        pcPic->getSlice(s)->setSaoEnabledFlag(CHANNEL_TYPE_LUMA, sliceEnabled[COMPONENT_Y]);
        assert(sliceEnabled[COMPONENT_Cb] == sliceEnabled[COMPONENT_Cr]);
        pcPic->getSlice(s)->setSaoEnabledFlag(CHANNEL_TYPE_CHROMA, sliceEnabled[COMPONENT_Cb]);
      }
    }

    // pcSlice is currently slice 0.
    Int64 binCountsInNalUnits   = 0; // For implementation of cabac_zero_word stuffing (section 7.4.3.10)
    Int64 numBytesInVclNalUnits = 0; // For implementation of cabac_zero_word stuffing (section 7.4.3.10)

    for( UInt sliceSegmentStartCtuTsAddr = 0, sliceIdxCount=0; sliceSegmentStartCtuTsAddr < pcPic->getPicSym()->getNumberOfCtusInFrame(); sliceIdxCount++, sliceSegmentStartCtuTsAddr=pcSlice->getSliceSegmentCurEndCtuTsAddr() )
    {
      pcSlice = pcPic->getSlice(sliceIdxCount);
      if(sliceIdxCount > 0 && pcSlice->getSliceType()!= I_SLICE)
      {
        pcSlice->checkColRefIdx(sliceIdxCount, pcPic);
      }
      pcPic->setCurrSliceIdx(sliceIdxCount);
      m_pcSliceEncoder->setSliceIdx(sliceIdxCount);

      pcSlice->setRPS(pcPic->getSlice(0)->getRPS());
      pcSlice->setRPSidx(pcPic->getSlice(0)->getRPSidx());

      for ( UInt ui = 0 ; ui < numSubstreams; ui++ )
      {
        substreamsOut[ui].clear();
      }

      m_pcEntropyCoder->setEntropyCoder   ( m_pcCavlcCoder, pcSlice );
      m_pcEntropyCoder->resetEntropy      ();
      /* start slice NALunit */
      OutputNALUnit nalu( pcSlice->getNalUnitType(), pcSlice->getTLayer() );
      m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);

      pcSlice->setNoRaslOutputFlag(false);
      if (pcSlice->isIRAP())
      {
        if (pcSlice->getNalUnitType() >= NAL_UNIT_CODED_SLICE_BLA_W_LP && pcSlice->getNalUnitType() <= NAL_UNIT_CODED_SLICE_IDR_N_LP)
        {
          pcSlice->setNoRaslOutputFlag(true);
        }
        //the inference for NoOutputPriorPicsFlag
        // KJS: This cannot happen at the encoder
        if (!m_bFirst && pcSlice->isIRAP() && pcSlice->getNoRaslOutputFlag())
        {
          if (pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA)
          {
            pcSlice->setNoOutputPriorPicsFlag(true);
          }
        }
      }

      tmpBitsBeforeWriting = m_pcEntropyCoder->getNumberOfWrittenBits();
      m_pcEntropyCoder->encodeSliceHeader(pcSlice);
      actualHeadBits += ( m_pcEntropyCoder->getNumberOfWrittenBits() - tmpBitsBeforeWriting );

      pcSlice->setFinalized(true);

#if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST
      g_bFinalEncode = true;
#endif

      pcSlice->clearSubstreamSizes(  );
      {
        UInt numBinsCoded = 0;
        m_pcSliceEncoder->encodeSlice(pcPic, &(substreamsOut[0]), numBinsCoded);
        binCountsInNalUnits+=numBinsCoded;
      }

#if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST
      g_bFinalEncode = false;
#endif

      {
        // Construct the final bitstream by concatenating substreams.
        // The final bitstream is either nalu.m_Bitstream or pcBitstreamRedirect;
        // Complete the slice header info.
        m_pcEntropyCoder->setEntropyCoder   ( m_pcCavlcCoder, pcSlice );
        m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
        m_pcEntropyCoder->encodeTilesWPPEntryPoint( pcSlice );

        // Append substreams...
        TComOutputBitstream *pcOut = pcBitstreamRedirect;
        const Int numZeroSubstreamsAtStartOfSlice  = pcPic->getSubstreamForCtuAddr(pcSlice->getSliceSegmentCurStartCtuTsAddr(), false, pcSlice);
        const Int numSubstreamsToCode  = pcSlice->getNumberOfSubstreamSizes()+1;
        for ( UInt ui = 0 ; ui < numSubstreamsToCode; ui++ )
        {
          pcOut->addSubstream(&(substreamsOut[ui+numZeroSubstreamsAtStartOfSlice]));
        }
      }

      // If current NALU is the first NALU of slice (containing slice header) and more NALUs exist (due to multiple dependent slices) then buffer it.
      // If current NALU is the last NALU of slice and a NALU was buffered, then (a) Write current NALU (b) Update an write buffered NALU at approproate location in NALU list.
      Bool bNALUAlignedWrittenToList    = false; // used to ensure current NALU is not written more than once to the NALU list.
      xAttachSliceDataToNalUnit(nalu, pcBitstreamRedirect);
      accessUnit.push_back(new NALUnitEBSP(nalu));
      actualTotalBits += UInt(accessUnit.back()->m_nalUnitData.str().size()) * 8;
      numBytesInVclNalUnits += Int64(accessUnit.back()->m_nalUnitData.str().size());
      bNALUAlignedWrittenToList = true;

      if (!bNALUAlignedWrittenToList)
      {
        nalu.m_Bitstream.writeAlignZero();
        accessUnit.push_back(new NALUnitEBSP(nalu));
      }

      if( ( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() ) &&
          ( pcSlice->getSPS()->getVuiParametersPresentFlag() ) &&
          ( ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNalHrdParametersPresentFlag() )
         || ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getVclHrdParametersPresentFlag() ) ) &&
          ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getSubPicCpbParamsPresentFlag() ) )
      {
          UInt numNalus = 0;
        UInt numRBSPBytes = 0;
        for (AccessUnit::const_iterator it = accessUnit.begin(); it != accessUnit.end(); it++)
        {
          UInt numRBSPBytes_nal = UInt((*it)->m_nalUnitData.str().size());
          if ((*it)->m_nalUnitType != NAL_UNIT_PREFIX_SEI && (*it)->m_nalUnitType != NAL_UNIT_SUFFIX_SEI)
          {
            numRBSPBytes += numRBSPBytes_nal;
            numNalus ++;
          }
        }
        accumBitsDU[ pcSlice->getSliceIdx() ] = ( numRBSPBytes << 3 );
        accumNalsDU[ pcSlice->getSliceIdx() ] = numNalus;   // SEI not counted for bit count; hence shouldn't be counted for # of NALUs - only for consistency
      }
    } // end iteration over slices

    // cabac_zero_words processing
    {
      const Int log2subWidthCxsubHeightC = (pcPic->getComponentScaleX(COMPONENT_Cb)+pcPic->getComponentScaleY(COMPONENT_Cb));
      const Int minCuWidth  = pcPic->getMinCUWidth();
      const Int minCuHeight = pcPic->getMinCUHeight();
      const Int paddedWidth = ((pcSlice->getSPS()->getPicWidthInLumaSamples()  + minCuWidth  - 1) / minCuWidth) * minCuWidth;
      const Int paddedHeight= ((pcSlice->getSPS()->getPicHeightInLumaSamples() + minCuHeight - 1) / minCuHeight) * minCuHeight;
      const Int rawBits = paddedWidth * paddedHeight *
                             (g_bitDepth[CHANNEL_TYPE_LUMA] + 2*(g_bitDepth[CHANNEL_TYPE_CHROMA]>>log2subWidthCxsubHeightC));
      const Int64 threshold = (32LL/3)*numBytesInVclNalUnits + (rawBits/32);
      if (binCountsInNalUnits >= threshold)
      {
        // need to add additional cabac zero words (each one accounts for 3 bytes (=00 00 03)) to increase numBytesInVclNalUnits
        const Int64 targetNumBytesInVclNalUnits = ((binCountsInNalUnits - (rawBits/32))*3+31)/32;
        const Int64 numberOfAdditionalBytesNeeded=targetNumBytesInVclNalUnits - numBytesInVclNalUnits;

        if (numberOfAdditionalBytesNeeded>0) // It should be!
        {
          const Int64 numberOfAdditionalCabacZeroWords=(numberOfAdditionalBytesNeeded+2)/3;
          const Int64 numberOfAdditionalCabacZeroBytes=numberOfAdditionalCabacZeroWords*3;
          if (m_pcCfg->getCabacZeroWordPaddingEnabled())
          {
            std::vector<Char> zeroBytesPadding(numberOfAdditionalCabacZeroBytes, Char(0));
            for(Int64 i=0; i<numberOfAdditionalCabacZeroWords; i++)
            {
              zeroBytesPadding[i*3+2]=3;  // 00 00 03
            }
            accessUnit.back()->m_nalUnitData.write(&(zeroBytesPadding[0]), numberOfAdditionalCabacZeroBytes);
            printf("Adding %lld bytes of padding\n", numberOfAdditionalCabacZeroWords*3);
          }
          else
          {
            printf("Standard would normally require adding %lld bytes of padding\n", numberOfAdditionalCabacZeroWords*3);
          }
        }
      }
    }

    pcPic->compressMotion();

    //-- For time output for each slice
    Double dEncTime = (Double)(clock()-iBeforeTime) / CLOCKS_PER_SEC;

    std::string digestStr;
    if (m_pcCfg->getDecodedPictureHashSEIEnabled())
    {
      /* calculate MD5sum for entire reconstructed picture */
      SEIDecodedPictureHash sei_recon_picture_digest;
      if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 1)
      {
        sei_recon_picture_digest.method = SEIDecodedPictureHash::MD5;
        UInt numChar=calcMD5(*pcPic->getPicYuvRec(), sei_recon_picture_digest.m_digest);
        digestStr = digestToString(sei_recon_picture_digest.m_digest, numChar);
      }
      else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 2)
      {
        sei_recon_picture_digest.method = SEIDecodedPictureHash::CRC;
        UInt numChar=calcCRC(*pcPic->getPicYuvRec(), sei_recon_picture_digest.m_digest);
        digestStr = digestToString(sei_recon_picture_digest.m_digest, numChar);
      }
      else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 3)
      {
        sei_recon_picture_digest.method = SEIDecodedPictureHash::CHECKSUM;
        UInt numChar=calcChecksum(*pcPic->getPicYuvRec(), sei_recon_picture_digest.m_digest);
        digestStr = digestToString(sei_recon_picture_digest.m_digest, numChar);
      }
      OutputNALUnit nalu(NAL_UNIT_SUFFIX_SEI, pcSlice->getTLayer());

      /* write the SEI messages */
      m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
      m_seiWriter.writeSEImessage(nalu.m_Bitstream, sei_recon_picture_digest, pcSlice->getSPS());
      writeRBSPTrailingBits(nalu.m_Bitstream);

      accessUnit.insert(accessUnit.end(), new NALUnitEBSP(nalu));
    }
    if (m_pcCfg->getTemporalLevel0IndexSEIEnabled())
    {
      SEITemporalLevel0Index sei_temporal_level0_index;
      if (pcSlice->getRapPicFlag())
      {
        m_tl0Idx = 0;
        m_rapIdx = (m_rapIdx + 1) & 0xFF;
      }
      else
      {
        m_tl0Idx = (m_tl0Idx + (pcSlice->getTLayer() ? 0 : 1)) & 0xFF;
      }
      sei_temporal_level0_index.tl0Idx = m_tl0Idx;
      sei_temporal_level0_index.rapIdx = m_rapIdx;

      OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);

      /* write the SEI messages */
      m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
      m_seiWriter.writeSEImessage(nalu.m_Bitstream, sei_temporal_level0_index, pcSlice->getSPS());
      writeRBSPTrailingBits(nalu.m_Bitstream);

      /* insert the SEI message NALUnit before any Slice NALUnits */
      AccessUnit::iterator it = find_if(accessUnit.begin(), accessUnit.end(), mem_fun(&NALUnit::isSlice));
      accessUnit.insert(it, new NALUnitEBSP(nalu));
    }

    m_pcCfg->setEncodedFlag(iGOPid, true);
    xCalculateAddPSNR( pcPic, pcPic->getPicYuvRec(), accessUnit, dEncTime, snr_conversion, printFrameMSE );

    //In case of field coding, compute the interlaced PSNR for both fields
    if(isField)
    {
      Bool bothFieldsAreEncoded = false;
      Int correspondingFieldPOC = pcPic->getPOC();
      Int currentPicGOPPoc = m_pcCfg->getGOPEntry(iGOPid).m_POC;
      if(pcPic->getPOC() == 0)
      {
        // particular case for POC 0 and 1. 
        // If they are not encoded first and separately from other pictures, we need to change this 
        // POC 0 is always encoded first then POC 1 is encoded
        bothFieldsAreEncoded = false;
      }
      else if(pcPic->getPOC() == 1)
      {
        // if we are at POC 1, POC 0 has been encoded for sure
        correspondingFieldPOC = 0;
        bothFieldsAreEncoded = true;
      }
      else 
      {
        if(pcPic->getPOC()%2 == 1)
        {
          correspondingFieldPOC -= 1; // all odd POC are associated with the preceding even POC (e.g poc 1 is associated to poc 0)
          currentPicGOPPoc      -= 1;
        }
        else
        {
          correspondingFieldPOC += 1; // all even POC are associated with the following odd POC (e.g poc 0 is associated to poc 1)
          currentPicGOPPoc      += 1;
        }
        for(Int i = 0; i < m_iGopSize; i ++)
        {
          if(m_pcCfg->getGOPEntry(i).m_POC == currentPicGOPPoc)
          {
            bothFieldsAreEncoded = m_pcCfg->getGOPEntry(i).m_isEncoded;
            break;
          }
        }
      }

      if(bothFieldsAreEncoded)
      {        
        //get complementary top field
        TComList<TComPic*>::iterator   iterPic = rcListPic.begin();
        while ((*iterPic)->getPOC() != correspondingFieldPOC)
        {
          iterPic ++;
        }
        TComPic* correspondingFieldPic = *(iterPic);

        if( (pcPic->isTopField() && isTff) || (!pcPic->isTopField() && !isTff))
        {
          xCalculateInterlacedAddPSNR(pcPic, correspondingFieldPic, pcPic->getPicYuvRec(), correspondingFieldPic->getPicYuvRec(), accessUnit, dEncTime, snr_conversion, printFrameMSE );
        }
        else
        {
          xCalculateInterlacedAddPSNR(correspondingFieldPic, pcPic, correspondingFieldPic->getPicYuvRec(), pcPic->getPicYuvRec(), accessUnit, dEncTime, snr_conversion, printFrameMSE );
        }
      }
    }

#if VERBOSE_FRAME
    if (!digestStr.empty())
    {
      if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 1)
      {
        printf(" [MD5:%s]", digestStr.c_str());
      }
      else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 2)
      {
        printf(" [CRC:%s]", digestStr.c_str());
      }
      else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 3)
      {
        printf(" [Checksum:%s]", digestStr.c_str());
      }
    }
#endif

    if ( m_pcCfg->getUseRateCtrl() )
    {
      Double avgQP     = m_pcRateCtrl->getRCPic()->calAverageQP();
      Double avgLambda = m_pcRateCtrl->getRCPic()->calAverageLambda();
      if ( avgLambda < 0.0 )
      {
        avgLambda = lambda;
      }

      m_pcRateCtrl->getRCPic()->updateAfterPicture( actualHeadBits, actualTotalBits, avgQP, avgLambda, pcSlice->getSliceType());
      m_pcRateCtrl->getRCPic()->addToPictureLsit( m_pcRateCtrl->getPicList() );

      m_pcRateCtrl->getRCSeq()->updateAfterPic( actualTotalBits );
      if ( pcSlice->getSliceType() != I_SLICE )
      {
        m_pcRateCtrl->getRCGOP()->updateAfterPicture( actualTotalBits );
      }
      else    // for intra picture, the estimated bits are used to update the current status in the GOP
      {
        m_pcRateCtrl->getRCGOP()->updateAfterPicture( estimatedBits );
      }
    }

    if( ( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() ) &&
        ( pcSlice->getSPS()->getVuiParametersPresentFlag() ) &&
        ( ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNalHrdParametersPresentFlag() )
        || ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getVclHrdParametersPresentFlag() ) ) )
    {
      TComVUI *vui = pcSlice->getSPS()->getVuiParameters();
      TComHRD *hrd = vui->getHrdParameters();

      if( hrd->getSubPicCpbParamsPresentFlag() )
      {
        Int i;
        UInt64 ui64Tmp;
        UInt uiPrev = 0;
        UInt numDU = ( pictureTimingSEI.m_numDecodingUnitsMinus1 + 1 );
        UInt *pCRD = &pictureTimingSEI.m_duCpbRemovalDelayMinus1[0];
        UInt maxDiff = ( hrd->getTickDivisorMinus2() + 2 ) - 1;

        for( i = 0; i < numDU; i ++ )
        {
          pictureTimingSEI.m_numNalusInDuMinus1[ i ]       = ( i == 0 ) ? ( accumNalsDU[ i ] - 1 ) : ( accumNalsDU[ i ] - accumNalsDU[ i - 1] - 1 );
        }

        if( numDU == 1 )
        {
          pCRD[ 0 ] = 0; /* don't care */
        }
        else
        {
          pCRD[ numDU - 1 ] = 0;/* by definition */
          UInt tmp = 0;
          UInt accum = 0;

          for( i = ( numDU - 2 ); i >= 0; i -- )
          {
            ui64Tmp = ( ( ( accumBitsDU[ numDU - 1 ]  - accumBitsDU[ i ] ) * ( vui->getTimingInfo()->getTimeScale() / vui->getTimingInfo()->getNumUnitsInTick() ) * ( hrd->getTickDivisorMinus2() + 2 ) ) / ( m_pcCfg->getTargetBitrate() ) );
            if( (UInt)ui64Tmp > maxDiff )
            {
              tmp ++;
            }
          }
          uiPrev = 0;

          UInt flag = 0;
          for( i = ( numDU - 2 ); i >= 0; i -- )
          {
            flag = 0;
            ui64Tmp = ( ( ( accumBitsDU[ numDU - 1 ]  - accumBitsDU[ i ] ) * ( vui->getTimingInfo()->getTimeScale() / vui->getTimingInfo()->getNumUnitsInTick() ) * ( hrd->getTickDivisorMinus2() + 2 ) ) / ( m_pcCfg->getTargetBitrate() ) );

            if( (UInt)ui64Tmp > maxDiff )
            {
              if(uiPrev >= maxDiff - tmp)
              {
                ui64Tmp = uiPrev + 1;
                flag = 1;
              }
              else                            ui64Tmp = maxDiff - tmp + 1;
            }
            pCRD[ i ] = (UInt)ui64Tmp - uiPrev - 1;
            if( (Int)pCRD[ i ] < 0 )
            {
              pCRD[ i ] = 0;
            }
            else if (tmp > 0 && flag == 1)
            {
              tmp --;
            }
            accum += pCRD[ i ] + 1;
            uiPrev = accum;
          }
        }
      }

      if( m_pcCfg->getPictureTimingSEIEnabled() )
      {
        {
          OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI, pcSlice->getTLayer());
          m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
          pictureTimingSEI.m_picStruct = (isField && pcSlice->getPic()->isTopField())? 1 : isField? 2 : 0;
          m_seiWriter.writeSEImessage(nalu.m_Bitstream, pictureTimingSEI, pcSlice->getSPS());
          writeRBSPTrailingBits(nalu.m_Bitstream);
          UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit);
          UInt offsetPosition = m_activeParameterSetSEIPresentInAU
                                    + m_bufferingPeriodSEIPresentInAU;    // Insert PT SEI after APS and BP SEI
          AccessUnit::iterator it = accessUnit.begin();
          for(Int j = 0; j < seiPositionInAu + offsetPosition; j++)
          {
            it++;
          }
          accessUnit.insert(it, new NALUnitEBSP(nalu));
          m_pictureTimingSEIPresentInAU = true;
        }

        if ( m_pcCfg->getScalableNestingSEIEnabled() ) // put picture timing SEI into scalable nesting SEI
        {
          OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI, pcSlice->getTLayer());
          m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
          scalableNestingSEI.m_nestedSEIs.clear();
          scalableNestingSEI.m_nestedSEIs.push_back(&pictureTimingSEI);
          m_seiWriter.writeSEImessage(nalu.m_Bitstream, scalableNestingSEI, pcSlice->getSPS());
          writeRBSPTrailingBits(nalu.m_Bitstream);
          UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit);
          UInt offsetPosition = m_activeParameterSetSEIPresentInAU
            + m_bufferingPeriodSEIPresentInAU + m_pictureTimingSEIPresentInAU + m_nestedBufferingPeriodSEIPresentInAU;    // Insert PT SEI after APS and BP SEI
          AccessUnit::iterator it = accessUnit.begin();
          for(Int j = 0; j < seiPositionInAu + offsetPosition; j++)
          {
            it++;
          }
          accessUnit.insert(it, new NALUnitEBSP(nalu));
          m_nestedPictureTimingSEIPresentInAU = true;
        }
      }

      if( m_pcCfg->getDecodingUnitInfoSEIEnabled() && hrd->getSubPicCpbParamsPresentFlag() )
      {
        m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
        for( Int i = 0; i < ( pictureTimingSEI.m_numDecodingUnitsMinus1 + 1 ); i ++ )
        {
          OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI, pcSlice->getTLayer());

          SEIDecodingUnitInfo tempSEI;
          tempSEI.m_decodingUnitIdx = i;
          tempSEI.m_duSptCpbRemovalDelay = pictureTimingSEI.m_duCpbRemovalDelayMinus1[i] + 1;
          tempSEI.m_dpbOutputDuDelayPresentFlag = false;
          tempSEI.m_picSptDpbOutputDuDelay = picSptDpbOutputDuDelay;

          // Insert the first one in the right location, before the first slice
          if(i == 0)
          {
            // Insert before the first slice.
            m_seiWriter.writeSEImessage(nalu.m_Bitstream, tempSEI, pcSlice->getSPS());
            writeRBSPTrailingBits(nalu.m_Bitstream);

            UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit);
            UInt offsetPosition = m_activeParameterSetSEIPresentInAU
                                  + m_bufferingPeriodSEIPresentInAU
                                  + m_pictureTimingSEIPresentInAU;  // Insert DU info SEI after APS, BP and PT SEI
            AccessUnit::iterator it = accessUnit.begin();
            for(Int j = 0; j < seiPositionInAu + offsetPosition; j++)
            {
              it++;
            }
            accessUnit.insert(it, new NALUnitEBSP(nalu));
          }
          else
          {
            // For the second decoding unit onwards we know how many NALUs are present
            AccessUnit::iterator it = accessUnit.begin();
            for (Int ctr = 0; it != accessUnit.end(); it++)
            {
              if(ctr == accumNalsDU[ i - 1 ])
              {
                // Insert before the first slice.
                m_seiWriter.writeSEImessage(nalu.m_Bitstream, tempSEI, pcSlice->getSPS());
                writeRBSPTrailingBits(nalu.m_Bitstream);

                accessUnit.insert(it, new NALUnitEBSP(nalu));
                break;
              }
              if ((*it)->m_nalUnitType != NAL_UNIT_PREFIX_SEI && (*it)->m_nalUnitType != NAL_UNIT_SUFFIX_SEI)
              {
                ctr++;
              }
            }
          }
        }
      }
    }

    xResetNonNestedSEIPresentFlags();
    xResetNestedSEIPresentFlags();

    pcPic->getPicYuvRec()->copyToPic(pcPicYuvRecOut);

    pcPic->setReconMark   ( true );
    m_bFirst = false;
    m_iNumPicCoded++;
    m_totalCoded ++;
    /* logging: insert a newline at end of picture period */
#if VERBOSE_FRAME
    printf("\n");
    fflush(stdout);
#endif

#if EFFICIENT_FIELD_IRAP
    if(IRAPtoReorder)
    {
      if(swapIRAPForward)
      {
        if(iGOPid == IRAPGOPid)
        {
          iGOPid = IRAPGOPid +1;
          IRAPtoReorder = false;
        }
        else if(iGOPid == IRAPGOPid +1)
        {
          iGOPid --;
        }
      }
      else
      {
        if(iGOPid == IRAPGOPid)
        {
          iGOPid = IRAPGOPid -1;
        }
        else if(iGOPid == IRAPGOPid -1)
        {
          iGOPid = IRAPGOPid;
          IRAPtoReorder = false;
        }
      }
    }
#endif
  } // iGOPid-loop

  delete pcBitstreamRedirect;

  if( accumBitsDU != NULL) delete accumBitsDU;
  if( accumNalsDU != NULL) delete accumNalsDU;

  assert ( (m_iNumPicCoded == iNumPicRcvd) );
}

Void TEncGOP::printOutSummary(UInt uiNumAllPicCoded, Bool isField, const Bool printMSEBasedSNR, const Bool printSequenceMSE)
{
  assert (uiNumAllPicCoded == m_gcAnalyzeAll.getNumPic());


  //--CFG_KDY
  const Int rateMultiplier=(isField?2:1);
  m_gcAnalyzeAll.setFrmRate( m_pcCfg->getFrameRate()*rateMultiplier );
  m_gcAnalyzeI.setFrmRate( m_pcCfg->getFrameRate()*rateMultiplier );
  m_gcAnalyzeP.setFrmRate( m_pcCfg->getFrameRate()*rateMultiplier );
  m_gcAnalyzeB.setFrmRate( m_pcCfg->getFrameRate()*rateMultiplier );
  const ChromaFormat chFmt = m_pcCfg->getChromaFormatIdc();

  //-- all
  printf( "\n\nSUMMARY --------------------------------------------------------\n" );
  m_gcAnalyzeAll.printOut('a', chFmt, printMSEBasedSNR, printSequenceMSE);

  printf( "\n\nI Slices--------------------------------------------------------\n" );
  m_gcAnalyzeI.printOut('i', chFmt, printMSEBasedSNR, printSequenceMSE);

  printf( "\n\nP Slices--------------------------------------------------------\n" );
  m_gcAnalyzeP.printOut('p', chFmt, printMSEBasedSNR, printSequenceMSE);

  printf( "\n\nB Slices--------------------------------------------------------\n" );
  m_gcAnalyzeB.printOut('b', chFmt, printMSEBasedSNR, printSequenceMSE);

#if _SUMMARY_OUT_
  m_gcAnalyzeAll.printSummary(chFmt, printSequenceMSE);
#endif
#if _SUMMARY_PIC_
  m_gcAnalyzeI.printSummary(chFmt, printSequenceMSE,'I');
  m_gcAnalyzeP.printSummary(chFmt, printSequenceMSE,'P');
  m_gcAnalyzeB.printSummary(chFmt, printSequenceMSE,'B');
#endif

  if(isField)
  {
    //-- interlaced summary
    m_gcAnalyzeAll_in.setFrmRate( m_pcCfg->getFrameRate());
    m_gcAnalyzeAll_in.setBits(m_gcAnalyzeAll.getBits());
    // prior to the above statement, the interlace analyser does not contain the correct total number of bits.

    printf( "\n\nSUMMARY INTERLACED ---------------------------------------------\n" );
    m_gcAnalyzeAll_in.printOut('a', chFmt, printMSEBasedSNR, printSequenceMSE);

#if _SUMMARY_OUT_
    m_gcAnalyzeAll_in.printSummary(chFmt, printSequenceMSE);
#endif
  }

  printf("\nRVM: %.3lf\n" , xCalculateRVM());
}

Void TEncGOP::preLoopFilterPicAll( TComPic* pcPic, UInt64& ruiDist )
{
  Bool bCalcDist = false;
  m_pcLoopFilter->setCfg(m_pcCfg->getLFCrossTileBoundaryFlag());
  m_pcLoopFilter->loopFilterPic( pcPic );

  if (!bCalcDist)
    ruiDist = xFindDistortionFrame(pcPic->getPicYuvOrg(), pcPic->getPicYuvRec());
}

// ====================================================================================================================
// Protected member functions
// ====================================================================================================================


Void TEncGOP::xInitGOP( Int iPOCLast, Int iNumPicRcvd, TComList<TComPic*>& rcListPic, TComList<TComPicYuv*>& rcListPicYuvRecOut, Bool isField )
{
  assert( iNumPicRcvd > 0 );
  //  Exception for the first frames
  if ( ( isField && (iPOCLast == 0 || iPOCLast == 1) ) || (!isField  && (iPOCLast == 0))  )
  {
    m_iGopSize    = 1;
  }
  else
  {
    m_iGopSize    = m_pcCfg->getGOPSize();
  }
  assert (m_iGopSize > 0);

  return;
}


Void TEncGOP::xGetBuffer( TComList<TComPic*>&      rcListPic,
                         TComList<TComPicYuv*>&    rcListPicYuvRecOut,
                         Int                       iNumPicRcvd,
                         Int                       iTimeOffset,
                         TComPic*&                 rpcPic,
                         TComPicYuv*&              rpcPicYuvRecOut,
                         Int                       pocCurr,
                         Bool                      isField)
{
  Int i;
  //  Rec. output
  TComList<TComPicYuv*>::iterator     iterPicYuvRec = rcListPicYuvRecOut.end();

  if (isField && pocCurr > 1 && m_iGopSize!=1)
  {
    iTimeOffset--;
  }

  for ( i = 0; i < (iNumPicRcvd - iTimeOffset + 1); i++ )
  {
    iterPicYuvRec--;
  }

  rpcPicYuvRecOut = *(iterPicYuvRec);

  //  Current pic.
  TComList<TComPic*>::iterator        iterPic       = rcListPic.begin();
  while (iterPic != rcListPic.end())
  {
    rpcPic = *(iterPic);
    rpcPic->setCurrSliceIdx(0);
    if (rpcPic->getPOC() == pocCurr)
    {
      break;
    }
    iterPic++;
  }

  assert (rpcPic != NULL);
  assert (rpcPic->getPOC() == pocCurr);

  return;
}

UInt64 TEncGOP::xFindDistortionFrame (TComPicYuv* pcPic0, TComPicYuv* pcPic1)
{
  UInt64  uiTotalDiff = 0;

  for(Int chan=0; chan<pcPic0 ->getNumberValidComponents(); chan++)
  {
    const ComponentID ch=ComponentID(chan);
    Pel*  pSrc0   = pcPic0 ->getAddr(ch);
    Pel*  pSrc1   = pcPic1 ->getAddr(ch);
    UInt  uiShift     = 2 * DISTORTION_PRECISION_ADJUSTMENT(g_bitDepth[toChannelType(ch)]-8);

    const Int   iStride = pcPic0->getStride(ch);
    const Int   iWidth  = pcPic0->getWidth(ch);
    const Int   iHeight = pcPic0->getHeight(ch);

    for(Int y = 0; y < iHeight; y++ )
    {
      for(Int x = 0; x < iWidth; x++ )
      {
        Intermediate_Int iTemp = pSrc0[x] - pSrc1[x];
        uiTotalDiff += UInt64((iTemp*iTemp) >> uiShift);
      }
      pSrc0 += iStride;
      pSrc1 += iStride;
    }
  }

  return uiTotalDiff;
}

#if VERBOSE_RATE
static const Char* nalUnitTypeToString(NalUnitType type)
{
  switch (type)
  {
    case NAL_UNIT_CODED_SLICE_TRAIL_R:    return "TRAIL_R";
    case NAL_UNIT_CODED_SLICE_TRAIL_N:    return "TRAIL_N";
    case NAL_UNIT_CODED_SLICE_TSA_R:      return "TSA_R";
    case NAL_UNIT_CODED_SLICE_TSA_N:      return "TSA_N";
    case NAL_UNIT_CODED_SLICE_STSA_R:     return "STSA_R";
    case NAL_UNIT_CODED_SLICE_STSA_N:     return "STSA_N";
    case NAL_UNIT_CODED_SLICE_BLA_W_LP:   return "BLA_W_LP";
    case NAL_UNIT_CODED_SLICE_BLA_W_RADL: return "BLA_W_RADL";
    case NAL_UNIT_CODED_SLICE_BLA_N_LP:   return "BLA_N_LP";
    case NAL_UNIT_CODED_SLICE_IDR_W_RADL: return "IDR_W_RADL";
    case NAL_UNIT_CODED_SLICE_IDR_N_LP:   return "IDR_N_LP";
    case NAL_UNIT_CODED_SLICE_CRA:        return "CRA";
    case NAL_UNIT_CODED_SLICE_RADL_R:     return "RADL_R";
    case NAL_UNIT_CODED_SLICE_RADL_N:     return "RADL_N";
    case NAL_UNIT_CODED_SLICE_RASL_R:     return "RASL_R";
    case NAL_UNIT_CODED_SLICE_RASL_N:     return "RASL_N";
    case NAL_UNIT_VPS:                    return "VPS";
    case NAL_UNIT_SPS:                    return "SPS";
    case NAL_UNIT_PPS:                    return "PPS";
    case NAL_UNIT_ACCESS_UNIT_DELIMITER:  return "AUD";
    case NAL_UNIT_EOS:                    return "EOS";
    case NAL_UNIT_EOB:                    return "EOB";
    case NAL_UNIT_FILLER_DATA:            return "FILLER";
    case NAL_UNIT_PREFIX_SEI:             return "SEI";
    case NAL_UNIT_SUFFIX_SEI:             return "SEI";
    default:                              return "UNK";
  }
}
#endif

Void TEncGOP::xCalculateAddPSNR( TComPic* pcPic, TComPicYuv* pcPicD, const AccessUnit& accessUnit, Double dEncTime, const InputColourSpaceConversion conversion, const Bool printFrameMSE )
{
  Double  dPSNR[MAX_NUM_COMPONENT];

  for(Int i=0; i<MAX_NUM_COMPONENT; i++)
  {
    dPSNR[i]=0.0;
  }

  TComPicYuv cscd;
  if (conversion!=IPCOLOURSPACE_UNCHANGED)
  {
    cscd.create(pcPicD->getWidth(COMPONENT_Y), pcPicD->getHeight(COMPONENT_Y), pcPicD->getChromaFormat(), g_uiMaxCUWidth, g_uiMaxCUHeight, g_uiMaxCUDepth);
    TVideoIOYuv::ColourSpaceConvert(*pcPicD, cscd, conversion, g_bitDepth, false);
  }
  TComPicYuv &picd=(conversion==IPCOLOURSPACE_UNCHANGED)?*pcPicD : cscd;

  //===== calculate PSNR =====
  Double MSEyuvframe[MAX_NUM_COMPONENT] = {0, 0, 0};

  for(Int chan=0; chan<pcPicD->getNumberValidComponents(); chan++)
  {
    const ComponentID ch=ComponentID(chan);
    const Pel*  pOrg    = (conversion!=IPCOLOURSPACE_UNCHANGED) ? pcPic ->getPicYuvTrueOrg()->getAddr(ch) : pcPic ->getPicYuvOrg()->getAddr(ch);
    Pel*  pRec    = picd.getAddr(ch);
    const Int   iStride = pcPicD->getStride(ch);

    const Int   iWidth  = pcPicD->getWidth (ch) - (m_pcEncTop->getPad(0) >> pcPic->getComponentScaleX(ch));
    const Int   iHeight = pcPicD->getHeight(ch) - ((m_pcEncTop->getPad(1) >> (pcPic->isField()?1:0)) >> pcPic->getComponentScaleY(ch));

    Int   iSize   = iWidth*iHeight;

    UInt64 uiSSDtemp=0;
    for(Int y = 0; y < iHeight; y++ )
    {
      for(Int x = 0; x < iWidth; x++ )
      {
        Intermediate_Int iDiff = (Intermediate_Int)( pOrg[x] - pRec[x] );
        uiSSDtemp   += iDiff * iDiff;
      }
      pOrg += iStride;
      pRec += iStride;
    }
    const Int maxval = 255 << (g_bitDepth[toChannelType(ch)] - 8);
    const Double fRefValue = (Double) maxval * maxval * iSize;
    dPSNR[ch]         = ( uiSSDtemp ? 10.0 * log10( fRefValue / (Double)uiSSDtemp ) : 999.99 );
    MSEyuvframe[ch]   = (Double)uiSSDtemp/(iSize);
  }


  /* calculate the size of the access unit, excluding:
   *  - any AnnexB contributions (start_code_prefix, zero_byte, etc.,)
   *  - SEI NAL units
   */
  UInt numRBSPBytes = 0;
  for (AccessUnit::const_iterator it = accessUnit.begin(); it != accessUnit.end(); it++)
  {
    UInt numRBSPBytes_nal = UInt((*it)->m_nalUnitData.str().size());
#if VERBOSE_RATE
    printf("*** %6s numBytesInNALunit: %u\n", nalUnitTypeToString((*it)->m_nalUnitType), numRBSPBytes_nal);
#endif
    if ((*it)->m_nalUnitType != NAL_UNIT_PREFIX_SEI && (*it)->m_nalUnitType != NAL_UNIT_SUFFIX_SEI)
    {
      numRBSPBytes += numRBSPBytes_nal;
    }
  }

  UInt uibits = numRBSPBytes * 8;
  m_vRVM_RP.push_back( uibits );

  //===== add PSNR =====
  m_gcAnalyzeAll.addResult (dPSNR, (Double)uibits, MSEyuvframe);
  TComSlice*  pcSlice = pcPic->getSlice(0);
  if (pcSlice->isIntra())
  {
    m_gcAnalyzeI.addResult (dPSNR, (Double)uibits, MSEyuvframe);
  }
  if (pcSlice->isInterP())
  {
    m_gcAnalyzeP.addResult (dPSNR, (Double)uibits, MSEyuvframe);
  }
  if (pcSlice->isInterB())
  {
    m_gcAnalyzeB.addResult (dPSNR, (Double)uibits, MSEyuvframe);
  }

  Char c = (pcSlice->isIntra() ? 'I' : pcSlice->isInterP() ? 'P' : 'B');
  if (!pcSlice->isReferenced()) c += 32;

#if VERBOSE_FRAME

#if ADAPTIVE_QP_SELECTION
  printf("POC %4d TId: %1d ( %c-SLICE, nQP %d QP %d ) %10d bits",
         pcSlice->getPOC(),
         pcSlice->getTLayer(),
         c,
         pcSlice->getSliceQpBase(),
         pcSlice->getSliceQp(),
         uibits );
#else
  printf("POC %4d TId: %1d ( %c-SLICE, QP %d ) %10d bits",
         pcSlice->getPOC()-pcSlice->getLastIDR(),
         pcSlice->getTLayer(),
         c,
         pcSlice->getSliceQp(),
         uibits );
#endif

  printf(" [Y %6.4lf dB    U %6.4lf dB    V %6.4lf dB]", dPSNR[COMPONENT_Y], dPSNR[COMPONENT_Cb], dPSNR[COMPONENT_Cr] );
  if (printFrameMSE)
  {
    printf(" [Y MSE %6.4lf  U MSE %6.4lf  V MSE %6.4lf]", MSEyuvframe[COMPONENT_Y], MSEyuvframe[COMPONENT_Cb], MSEyuvframe[COMPONENT_Cr] );
  }
  printf(" [ET %5.0f ]", dEncTime );

  for (Int iRefList = 0; iRefList < 2; iRefList++)
  {
    printf(" [L%d ", iRefList);
    for (Int iRefIndex = 0; iRefIndex < pcSlice->getNumRefIdx(RefPicList(iRefList)); iRefIndex++)
    {
      printf ("%d ", pcSlice->getRefPOC(RefPicList(iRefList), iRefIndex)-pcSlice->getLastIDR());
    }
    printf("]");
  }
#endif /* VERBOSE_FRAME */

  cscd.destroy();
}

Void TEncGOP::xCalculateInterlacedAddPSNR( TComPic* pcPicOrgFirstField, TComPic* pcPicOrgSecondField,
                                           TComPicYuv* pcPicRecFirstField, TComPicYuv* pcPicRecSecondField,
                                           const AccessUnit& accessUnit, Double dEncTime, const InputColourSpaceConversion conversion, const Bool printFrameMSE )
{
  Double  dPSNR[MAX_NUM_COMPONENT];
  TComPic    *apcPicOrgFields[2]={pcPicOrgFirstField, pcPicOrgSecondField};
  TComPicYuv *apcPicRecFields[2]={pcPicRecFirstField, pcPicRecSecondField};

  for(Int i=0; i<MAX_NUM_COMPONENT; i++)
  {
    dPSNR[i]=0.0;
  }

  TComPicYuv cscd[2 /* first/second field */];
  if (conversion!=IPCOLOURSPACE_UNCHANGED)
  {
    for(UInt fieldNum=0; fieldNum<2; fieldNum++)
    {
      TComPicYuv &reconField=*(apcPicRecFields[fieldNum]);
      cscd[fieldNum].create(reconField.getWidth(COMPONENT_Y), reconField.getHeight(COMPONENT_Y), reconField.getChromaFormat(), g_uiMaxCUWidth, g_uiMaxCUHeight, g_uiMaxCUDepth);
      TVideoIOYuv::ColourSpaceConvert(reconField, cscd[fieldNum], conversion, g_bitDepth, false);
      apcPicRecFields[fieldNum]=cscd+fieldNum;
    }
  }

  //===== calculate PSNR =====
  Double MSEyuvframe[MAX_NUM_COMPONENT] = {0, 0, 0};

  assert(apcPicRecFields[0]->getChromaFormat()==apcPicRecFields[1]->getChromaFormat());
  const UInt numValidComponents=apcPicRecFields[0]->getNumberValidComponents();

  for(Int chan=0; chan<numValidComponents; chan++)
  {
    const ComponentID ch=ComponentID(chan);
    assert(apcPicRecFields[0]->getWidth(ch)==apcPicRecFields[1]->getWidth(ch));
    assert(apcPicRecFields[0]->getHeight(ch)==apcPicRecFields[1]->getHeight(ch));

    UInt64 uiSSDtemp=0;
    const Int   iWidth  = apcPicRecFields[0]->getWidth (ch) - (m_pcEncTop->getPad(0) >> apcPicRecFields[0]->getComponentScaleX(ch));
    const Int   iHeight = apcPicRecFields[0]->getHeight(ch) - ((m_pcEncTop->getPad(1) >> 1) >> apcPicRecFields[0]->getComponentScaleY(ch));

    Int   iSize   = iWidth*iHeight;

    for(UInt fieldNum=0; fieldNum<2; fieldNum++)
    {
      TComPic *pcPic=apcPicOrgFields[fieldNum];
      TComPicYuv *pcPicD=apcPicRecFields[fieldNum];

      const Pel*  pOrg    = (conversion!=IPCOLOURSPACE_UNCHANGED) ? pcPic ->getPicYuvTrueOrg()->getAddr(ch) : pcPic ->getPicYuvOrg()->getAddr(ch);
      Pel*  pRec    = pcPicD->getAddr(ch);
      const Int   iStride = pcPicD->getStride(ch);


      for(Int y = 0; y < iHeight; y++ )
      {
        for(Int x = 0; x < iWidth; x++ )
        {
          Intermediate_Int iDiff = (Intermediate_Int)( pOrg[x] - pRec[x] );
          uiSSDtemp   += iDiff * iDiff;
        }
        pOrg += iStride;
        pRec += iStride;
      }
    }
    const Int maxval = 255 << (g_bitDepth[toChannelType(ch)] - 8);
    const Double fRefValue = (Double) maxval * maxval * iSize*2;
    dPSNR[ch]         = ( uiSSDtemp ? 10.0 * log10( fRefValue / (Double)uiSSDtemp ) : 999.99 );
    MSEyuvframe[ch]   = (Double)uiSSDtemp/(iSize*2);
  }

  UInt uibits = 0; // the number of bits for the pair is not calculated here - instead the overall total is used elsewhere.

  //===== add PSNR =====
  m_gcAnalyzeAll_in.addResult (dPSNR, (Double)uibits, MSEyuvframe);

  printf("\n                                      Interlaced frame %d: [Y %6.4lf dB    U %6.4lf dB    V %6.4lf dB]", pcPicOrgSecondField->getPOC()/2 , dPSNR[COMPONENT_Y], dPSNR[COMPONENT_Cb], dPSNR[COMPONENT_Cr] );
  if (printFrameMSE)
  {
    printf(" [Y MSE %6.4lf  U MSE %6.4lf  V MSE %6.4lf]", MSEyuvframe[COMPONENT_Y], MSEyuvframe[COMPONENT_Cb], MSEyuvframe[COMPONENT_Cr] );
  }

  for(UInt fieldNum=0; fieldNum<2; fieldNum++)
  {
    cscd[fieldNum].destroy();
  }
}

/** Function for deciding the nal_unit_type.
 * \param pocCurr POC of the current picture
 * \returns the nal unit type of the picture
 * This function checks the configuration and returns the appropriate nal_unit_type for the picture.
 */
NalUnitType TEncGOP::getNalUnitType(Int pocCurr, Int lastIDR, Bool isField)
{
  if (pocCurr == 0)
  {
    return NAL_UNIT_CODED_SLICE_IDR_W_RADL;
  }

#if EFFICIENT_FIELD_IRAP
  if(isField && pocCurr == 1)
  {
    // to avoid the picture becoming an IRAP
    return NAL_UNIT_CODED_SLICE_TRAIL_R;
  }
#endif

#if ALLOW_RECOVERY_POINT_AS_RAP
  if(m_pcCfg->getDecodingRefreshType() != 3 && (pocCurr - isField) % m_pcCfg->getIntraPeriod() == 0)
#else
  if ((pocCurr - isField) % m_pcCfg->getIntraPeriod() == 0)
#endif
  {
    if (m_pcCfg->getDecodingRefreshType() == 1)
    {
      return NAL_UNIT_CODED_SLICE_CRA;
    }
    else if (m_pcCfg->getDecodingRefreshType() == 2)
    {
      return NAL_UNIT_CODED_SLICE_IDR_W_RADL;
    }
  }
  if(m_pocCRA>0)
  {
    if(pocCurr<m_pocCRA)
    {
      // All leading pictures are being marked as TFD pictures here since current encoder uses all
      // reference pictures while encoding leading pictures. An encoder can ensure that a leading
      // picture can be still decodable when random accessing to a CRA/CRANT/BLA/BLANT picture by
      // controlling the reference pictures used for encoding that leading picture. Such a leading
      // picture need not be marked as a TFD picture.
      return NAL_UNIT_CODED_SLICE_RASL_R;
    }
  }
  if (lastIDR>0)
  {
    if (pocCurr < lastIDR)
    {
      return NAL_UNIT_CODED_SLICE_RADL_R;
    }
  }
  return NAL_UNIT_CODED_SLICE_TRAIL_R;
}

Double TEncGOP::xCalculateRVM()
{
  Double dRVM = 0;

  if( m_pcCfg->getGOPSize() == 1 && m_pcCfg->getIntraPeriod() != 1 && m_pcCfg->getFramesToBeEncoded() > RVM_VCEGAM10_M * 2 )
  {
    // calculate RVM only for lowdelay configurations
    std::vector<Double> vRL , vB;
    size_t N = m_vRVM_RP.size();
    vRL.resize( N );
    vB.resize( N );

    Int i;
    Double dRavg = 0 , dBavg = 0;
    vB[RVM_VCEGAM10_M] = 0;
    for( i = RVM_VCEGAM10_M + 1 ; i < N - RVM_VCEGAM10_M + 1 ; i++ )
    {
      vRL[i] = 0;
      for( Int j = i - RVM_VCEGAM10_M ; j <= i + RVM_VCEGAM10_M - 1 ; j++ )
        vRL[i] += m_vRVM_RP[j];
      vRL[i] /= ( 2 * RVM_VCEGAM10_M );
      vB[i] = vB[i-1] + m_vRVM_RP[i] - vRL[i];
      dRavg += m_vRVM_RP[i];
      dBavg += vB[i];
    }

    dRavg /= ( N - 2 * RVM_VCEGAM10_M );
    dBavg /= ( N - 2 * RVM_VCEGAM10_M );

    Double dSigamB = 0;
    for( i = RVM_VCEGAM10_M + 1 ; i < N - RVM_VCEGAM10_M + 1 ; i++ )
    {
      Double tmp = vB[i] - dBavg;
      dSigamB += tmp * tmp;
    }
    dSigamB = sqrt( dSigamB / ( N - 2 * RVM_VCEGAM10_M ) );

    Double f = sqrt( 12.0 * ( RVM_VCEGAM10_M - 1 ) / ( RVM_VCEGAM10_M + 1 ) );

    dRVM = dSigamB / dRavg * f;
  }

  return( dRVM );
}

/** Attaches the input bitstream to the stream in the output NAL unit
    Updates rNalu to contain concatenated bitstream. rpcBitstreamRedirect is cleared at the end of this function call.
 *  \param codedSliceData contains the coded slice data (bitstream) to be concatenated to rNalu
 *  \param rNalu          target NAL unit
 */
Void TEncGOP::xAttachSliceDataToNalUnit (OutputNALUnit& rNalu, TComOutputBitstream* codedSliceData)
{
  // Byte-align
  rNalu.m_Bitstream.writeByteAlignment();   // Slice header byte-alignment

  // Perform bitstream concatenation
  if (codedSliceData->getNumberOfWrittenBits() > 0)
  {
    rNalu.m_Bitstream.addSubstream(codedSliceData);
  }

  m_pcEntropyCoder->setBitstream(&rNalu.m_Bitstream);

  codedSliceData->clear();
}

// Function will arrange the long-term pictures in the decreasing order of poc_lsb_lt,
// and among the pictures with the same lsb, it arranges them in increasing delta_poc_msb_cycle_lt value
Void TEncGOP::arrangeLongtermPicturesInRPS(TComSlice *pcSlice, TComList<TComPic*>& rcListPic)
{
  TComReferencePictureSet *rps = pcSlice->getRPS();
  if(!rps->getNumberOfLongtermPictures())
  {
    return;
  }

  // Arrange long-term reference pictures in the correct order of LSB and MSB,
  // and assign values for pocLSBLT and MSB present flag
  Int longtermPicsPoc[MAX_NUM_REF_PICS], longtermPicsLSB[MAX_NUM_REF_PICS], indices[MAX_NUM_REF_PICS];
  Int longtermPicsMSB[MAX_NUM_REF_PICS];
  Bool mSBPresentFlag[MAX_NUM_REF_PICS];
  ::memset(longtermPicsPoc, 0, sizeof(longtermPicsPoc));    // Store POC values of LTRP
  ::memset(longtermPicsLSB, 0, sizeof(longtermPicsLSB));    // Store POC LSB values of LTRP
  ::memset(longtermPicsMSB, 0, sizeof(longtermPicsMSB));    // Store POC LSB values of LTRP
  ::memset(indices        , 0, sizeof(indices));            // Indices to aid in tracking sorted LTRPs
  ::memset(mSBPresentFlag , 0, sizeof(mSBPresentFlag));     // Indicate if MSB needs to be present

  // Get the long-term reference pictures
  Int offset = rps->getNumberOfNegativePictures() + rps->getNumberOfPositivePictures();
  Int i, ctr = 0;
  Int maxPicOrderCntLSB = 1 << pcSlice->getSPS()->getBitsForPOC();
  for(i = rps->getNumberOfPictures() - 1; i >= offset; i--, ctr++)
  {
    longtermPicsPoc[ctr] = rps->getPOC(i);                                  // LTRP POC
    longtermPicsLSB[ctr] = getLSB(longtermPicsPoc[ctr], maxPicOrderCntLSB); // LTRP POC LSB
    indices[ctr]      = i;
    longtermPicsMSB[ctr] = longtermPicsPoc[ctr] - longtermPicsLSB[ctr];
  }
  Int numLongPics = rps->getNumberOfLongtermPictures();
  assert(ctr == numLongPics);

  // Arrange pictures in decreasing order of MSB;
  for(i = 0; i < numLongPics; i++)
  {
    for(Int j = 0; j < numLongPics - 1; j++)
    {
      if(longtermPicsMSB[j] < longtermPicsMSB[j+1])
      {
        std::swap(longtermPicsPoc[j], longtermPicsPoc[j+1]);
        std::swap(longtermPicsLSB[j], longtermPicsLSB[j+1]);
        std::swap(longtermPicsMSB[j], longtermPicsMSB[j+1]);
        std::swap(indices[j]        , indices[j+1]        );
      }
    }
  }

  for(i = 0; i < numLongPics; i++)
  {
    // Check if MSB present flag should be enabled.
    // Check if the buffer contains any pictures that have the same LSB.
    TComList<TComPic*>::iterator  iterPic = rcListPic.begin();
    TComPic*                      pcPic;
    while ( iterPic != rcListPic.end() )
    {
      pcPic = *iterPic;
      if( (getLSB(pcPic->getPOC(), maxPicOrderCntLSB) == longtermPicsLSB[i])   &&     // Same LSB
                                      (pcPic->getSlice(0)->isReferenced())     &&    // Reference picture
                                        (pcPic->getPOC() != longtermPicsPoc[i])    )  // Not the LTRP itself
      {
        mSBPresentFlag[i] = true;
        break;
      }
      iterPic++;
    }
  }

  // tempArray for usedByCurr flag
  Bool tempArray[MAX_NUM_REF_PICS]; ::memset(tempArray, 0, sizeof(tempArray));
  for(i = 0; i < numLongPics; i++)
  {
    tempArray[i] = rps->getUsed(indices[i]);
  }
  // Now write the final values;
  ctr = 0;
  Int currMSB = 0, currLSB = 0;
  // currPicPoc = currMSB + currLSB
  currLSB = getLSB(pcSlice->getPOC(), maxPicOrderCntLSB);
  currMSB = pcSlice->getPOC() - currLSB;

  for(i = rps->getNumberOfPictures() - 1; i >= offset; i--, ctr++)
  {
    rps->setPOC                   (i, longtermPicsPoc[ctr]);
    rps->setDeltaPOC              (i, - pcSlice->getPOC() + longtermPicsPoc[ctr]);
    rps->setUsed                  (i, tempArray[ctr]);
    rps->setPocLSBLT              (i, longtermPicsLSB[ctr]);
    rps->setDeltaPocMSBCycleLT    (i, (currMSB - (longtermPicsPoc[ctr] - longtermPicsLSB[ctr])) / maxPicOrderCntLSB);
    rps->setDeltaPocMSBPresentFlag(i, mSBPresentFlag[ctr]);

    assert(rps->getDeltaPocMSBCycleLT(i) >= 0);   // Non-negative value
  }
  for(i = rps->getNumberOfPictures() - 1, ctr = 1; i >= offset; i--, ctr++)
  {
    for(Int j = rps->getNumberOfPictures() - 1 - ctr; j >= offset; j--)
    {
      // Here at the encoder we know that we have set the full POC value for the LTRPs, hence we
      // don't have to check the MSB present flag values for this constraint.
      assert( rps->getPOC(i) != rps->getPOC(j) ); // If assert fails, LTRP entry repeated in RPS!!!
    }
  }
}

/** Function for finding the position to insert the first of APS and non-nested BP, PT, DU info SEI messages.
 * \param accessUnit Access Unit of the current picture
 * This function finds the position to insert the first of APS and non-nested BP, PT, DU info SEI messages.
 */
Int TEncGOP::xGetFirstSeiLocation(AccessUnit &accessUnit)
{
  // Find the location of the first SEI message
  Int seiStartPos = 0;
  for(AccessUnit::iterator it = accessUnit.begin(); it != accessUnit.end(); it++, seiStartPos++)
  {
     if ((*it)->isSei() || (*it)->isVcl())
     {
       break;
     }
  }
  //  assert(it != accessUnit.end());  // Triggers with some legit configurations
  return seiStartPos;
}

Void TEncGOP::dblMetric( TComPic* pcPic, UInt uiNumSlices )
{
  TComPicYuv* pcPicYuvRec = pcPic->getPicYuvRec();
  Pel* Rec    = pcPicYuvRec->getAddr(COMPONENT_Y);
  Pel* tempRec = Rec;
  Int  stride = pcPicYuvRec->getStride(COMPONENT_Y);
  UInt log2maxTB = pcPic->getSlice(0)->getSPS()->getQuadtreeTULog2MaxSize();
  UInt maxTBsize = (1<<log2maxTB);
  const UInt minBlockArtSize = 8;
  const UInt picWidth = pcPicYuvRec->getWidth(COMPONENT_Y);
  const UInt picHeight = pcPicYuvRec->getHeight(COMPONENT_Y);
  const UInt noCol = (picWidth>>log2maxTB);
  const UInt noRows = (picHeight>>log2maxTB);
  assert(noCol > 1);
  assert(noRows > 1);
  UInt64 *colSAD = (UInt64*)malloc(noCol*sizeof(UInt64));
  UInt64 *rowSAD = (UInt64*)malloc(noRows*sizeof(UInt64));
  UInt colIdx = 0;
  UInt rowIdx = 0;
  Pel p0, p1, p2, q0, q1, q2;

  Int qp = pcPic->getSlice(0)->getSliceQp();
  Int bitdepthScale = 1 << (g_bitDepth[CHANNEL_TYPE_LUMA]-8);
  Int beta = TComLoopFilter::getBeta( qp ) * bitdepthScale;
  const Int thr2 = (beta>>2);
  const Int thr1 = 2*bitdepthScale;
  UInt a = 0;

  memset(colSAD, 0, noCol*sizeof(UInt64));
  memset(rowSAD, 0, noRows*sizeof(UInt64));

  if (maxTBsize > minBlockArtSize)
  {
    // Analyze vertical artifact edges
    for(Int c = maxTBsize; c < picWidth; c += maxTBsize)
    {
      for(Int r = 0; r < picHeight; r++)
      {
        p2 = Rec[c-3];
        p1 = Rec[c-2];
        p0 = Rec[c-1];
        q0 = Rec[c];
        q1 = Rec[c+1];
        q2 = Rec[c+2];
        a = ((abs(p2-(p1<<1)+p0)+abs(q0-(q1<<1)+q2))<<1);
        if ( thr1 < a && a < thr2)
        {
          colSAD[colIdx] += abs(p0 - q0);
        }
        Rec += stride;
      }
      colIdx++;
      Rec = tempRec;
    }

    // Analyze horizontal artifact edges
    for(Int r = maxTBsize; r < picHeight; r += maxTBsize)
    {
      for(Int c = 0; c < picWidth; c++)
      {
        p2 = Rec[c + (r-3)*stride];
        p1 = Rec[c + (r-2)*stride];
        p0 = Rec[c + (r-1)*stride];
        q0 = Rec[c + r*stride];
        q1 = Rec[c + (r+1)*stride];
        q2 = Rec[c + (r+2)*stride];
        a = ((abs(p2-(p1<<1)+p0)+abs(q0-(q1<<1)+q2))<<1);
        if (thr1 < a && a < thr2)
        {
          rowSAD[rowIdx] += abs(p0 - q0);
        }
      }
      rowIdx++;
    }
  }

  UInt64 colSADsum = 0;
  UInt64 rowSADsum = 0;
  for(Int c = 0; c < noCol-1; c++)
  {
    colSADsum += colSAD[c];
  }
  for(Int r = 0; r < noRows-1; r++)
  {
    rowSADsum += rowSAD[r];
  }

  colSADsum <<= 10;
  rowSADsum <<= 10;
  colSADsum /= (noCol-1);
  colSADsum /= picHeight;
  rowSADsum /= (noRows-1);
  rowSADsum /= picWidth;

  UInt64 avgSAD = ((colSADsum + rowSADsum)>>1);
  avgSAD >>= (g_bitDepth[CHANNEL_TYPE_LUMA]-8);

  if ( avgSAD > 2048 )
  {
    avgSAD >>= 9;
    Int offset = Clip3(2,6,(Int)avgSAD);
    for (Int i=0; i<uiNumSlices; i++)
    {
      pcPic->getSlice(i)->setDeblockingFilterOverrideFlag(true);
      pcPic->getSlice(i)->setDeblockingFilterDisable(false);
      pcPic->getSlice(i)->setDeblockingFilterBetaOffsetDiv2( offset );
      pcPic->getSlice(i)->setDeblockingFilterTcOffsetDiv2( offset );
    }
  }
  else
  {
    for (Int i=0; i<uiNumSlices; i++)
    {
      pcPic->getSlice(i)->setDeblockingFilterOverrideFlag(false);
      pcPic->getSlice(i)->setDeblockingFilterDisable(        pcPic->getSlice(i)->getPPS()->getPicDisableDeblockingFilterFlag() );
      pcPic->getSlice(i)->setDeblockingFilterBetaOffsetDiv2( pcPic->getSlice(i)->getPPS()->getDeblockingFilterBetaOffsetDiv2() );
      pcPic->getSlice(i)->setDeblockingFilterTcOffsetDiv2(   pcPic->getSlice(i)->getPPS()->getDeblockingFilterTcOffsetDiv2()   );
    }
  }

  free(colSAD);
  free(rowSAD);
}

//! \}