view src/xs_md5.c @ 732:8312acdb7b15

Bump autotools version requirement.
author Matti Hamalainen <ccr@tnsp.org>
date Mon, 05 Nov 2012 12:06:05 +0200
parents b0743dc9165d
children
line wrap: on
line source

/*
 * MD5 implementation, modified for XMMS-SID from
 * Colin Plumb's implementation by Matti 'ccr' Hämäläinen.
 *
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.  This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 */
#include "xs_support.h"
#include "xs_md5.h"
#include <glib.h>


#if G_BYTE_ORDER == G_LITTLE_ENDIAN
#define xs_md5_bytereverse(buf, len)    /* Nothing */
#else
#if G_BYTE_ORDER == G_BIG_ENDIAN
static void xs_md5_bytereverse(guint8 *buf, guint l)
{
    guint32 t;
    do {
        t = (guint32) ((guint) buf[3] << 8 | buf[2]) << 16 | ((guint) buf[1] << 8 | buf[0]);
        *(guint32 *) buf = t;
        buf += sizeof(guint32);
    } while (--l);
}
#else
#error Unsupported endianess!
#endif
#endif


/* Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
void xs_md5_init(xs_md5state_t *ctx)
{
    ctx->buf[0] = 0x67452301;
    ctx->buf[1] = 0xefcdab89;
    ctx->buf[2] = 0x98badcfe;
    ctx->buf[3] = 0x10325476;

    ctx->bits[0] = 0;
    ctx->bits[1] = 0;
}


/* The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  xs_md5_update blocks
 * the data and converts bytes into longwords for this routine.
 */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
#define MD5STEP(f, w, x, y, z, data, s) \
    ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )

static void xs_md5_transform(guint32 buf[4], guint32 const in[16])
{
    register guint32 a, b, c, d;

    a = buf[0];
    b = buf[1];
    c = buf[2];
    d = buf[3];

    MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
    MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
    MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
    MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
    MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
    MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
    MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
    MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
    MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
    MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
    MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

    MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
    MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
    MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
    MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
    MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

    MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

    MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

    buf[0] += a;
    buf[1] += b;
    buf[2] += c;
    buf[3] += d;
}


/* Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
void xs_md5_append(xs_md5state_t *ctx, const guint8 *buf, guint len)
{
    guint32 t;

    /* Update bitcount */
    t = ctx->bits[0];
    if ((ctx->bits[0] = t + ((guint32) len << 3)) < t)
        ctx->bits[1]++;    /* Carry from low to high */
    ctx->bits[1] += len >> 29;

    t = (t >> 3) & 0x3f;    /* Bytes already in shsInfo->data */

    /* Handle any leading odd-sized chunks */
    if (t) {
        guint8 *p = (guint8 *) ctx->in + t;

        t = 64 - t;
        if (len < t) {
            memcpy(p, buf, len);
            return;
        }
        memcpy(p, buf, t);
        xs_md5_bytereverse(ctx->in, 16);
        xs_md5_transform(ctx->buf, (guint32 *) ctx->in);
        buf += t;
        len -= t;
    }

    /* Process data in 64-byte chunks */
    while (len >= 64) {
        memcpy(ctx->in, buf, 64);
        xs_md5_bytereverse(ctx->in, 16);
        xs_md5_transform(ctx->buf, (guint32 *) ctx->in);
        buf += 64;
        len -= 64;
    }

    /* Handle any remaining bytes of data. */
    memcpy(ctx->in, buf, len);
}

/* Final wrapup - pad to 64-byte boundary with the bit pattern 
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
void xs_md5_finish(xs_md5state_t *ctx, xs_md5hash_t digest)
{
    guint count;
    guint8 *p;

    /* Compute number of bytes mod 64 */
    count = (ctx->bits[0] >> 3) & 0x3F;

    /* Set the first char of padding to 0x80.  This is safe since there is
       always at least one byte free */
    p = ctx->in + count;
    *p++ = 0x80;

    /* Bytes of padding needed to make 64 bytes */
    count = 64 - 1 - count;

    /* Pad out to 56 mod 64 */
    if (count < 8) {
        /* Two lots of padding:  Pad the first block to 64 bytes */
        memset(p, 0, count);
        xs_md5_bytereverse(ctx->in, 16);
        xs_md5_transform(ctx->buf, (guint32 *) ctx->in);

        /* Now fill the next block with 56 bytes */
        memset(ctx->in, 0, 56);
    } else {
        /* Pad block to 56 bytes */
        memset(p, 0, count - 8);
    }
    xs_md5_bytereverse(ctx->in, 14);

    /* Append length in bits and transform */
    ((guint32 *) ctx->in)[14] = ctx->bits[0];
    ((guint32 *) ctx->in)[15] = ctx->bits[1];

    xs_md5_transform(ctx->buf, (guint32 *) ctx->in);
    xs_md5_bytereverse((guint8 *) ctx->buf, 4);
    memcpy(digest, ctx->buf, 16);
    memset(ctx, 0, sizeof(ctx));    /* In case it's sensitive */
}